留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大兴安岭地区笃斯越橘铅和镉的吸收特性及污染评价

张继舟 袁磊 于志民 王立民 吕品

张继舟, 袁 磊, 于志民, 王立民, 吕 品. 大兴安岭地区笃斯越橘铅和镉的吸收特性及污染评价[J]. 土壤通报, 2023, 54(3): 703 − 712 doi: 10.19336/j.cnki.trtb.2022062401
引用本文: 张继舟, 袁 磊, 于志民, 王立民, 吕 品. 大兴安岭地区笃斯越橘铅和镉的吸收特性及污染评价[J]. 土壤通报, 2023, 54(3): 703 − 712 doi: 10.19336/j.cnki.trtb.2022062401
ZHANG Ji-zhou, YUAN Lei, YU Zhi-min, WANG Li-min, LV Pin. Absorption Characteristics and Pollution Evaluation of Pb and Cd by Vaccinium uliginosum L. in the Greater Khingan Mountains[J]. Chinese Journal of Soil Science, 2023, 54(3): 703 − 712 doi: 10.19336/j.cnki.trtb.2022062401
Citation: ZHANG Ji-zhou, YUAN Lei, YU Zhi-min, WANG Li-min, LV Pin. Absorption Characteristics and Pollution Evaluation of Pb and Cd by Vaccinium uliginosum L. in the Greater Khingan Mountains[J]. Chinese Journal of Soil Science, 2023, 54(3): 703 − 712 doi: 10.19336/j.cnki.trtb.2022062401

大兴安岭地区笃斯越橘铅和镉的吸收特性及污染评价

doi: 10.19336/j.cnki.trtb.2022062401
基金项目: 黑龙江省科学院院长基金(YZ2022ZR01)和黑龙江省省属科研院所科研业务费(SJKYYWFB2021ST01)资助
详细信息
    作者简介:

    张继舟(1980−),男,吉林省吉林人,博士,副研究员,主要从事土壤生态环境的研究工作。E-mail: jizhou1980229@126.com

    通讯作者:

    E-mail: lv_pin2005@163.com

  • 中图分类号: X53

Absorption Characteristics and Pollution Evaluation of Pb and Cd by Vaccinium uliginosum L. in the Greater Khingan Mountains

  • 摘要:   目的  研究大兴安岭地区自然生境中笃斯越橘叶片、果实及土壤中铅(Pb)和镉(Cd)的含量,为自然生境中笃斯越橘对Pb和Cd的吸收特征及果实品质评价提供基础数据支撑。  方法  以大兴安岭地区笃斯越橘天然种群为研究对象,通过分析其叶片、果实及所生长的土壤中Pb和Cd的含量,应用模型拟合,明确笃斯越橘对土壤中Pb和Cd的吸收特性;通过相关分析,明确影响笃斯越橘叶片及果实中Pb和Cd含量的环境因子;通过标准比较及潜在生态风险评价法,明确笃斯越橘叶片及果实受Pb和Cd的污染程度。  结果  ① 笃斯越橘叶片、果实及土壤中Pb和Cd含量均为空间中等程度变异。② Pb和Cd在笃斯越橘土壤到叶片及果实中的迁移系数(CRs)随土壤中有效态Pb和Cd浓度的增加而减小,该趋势可被Langumir曲线模型较好的拟合。③土壤中较高的碱解氮含量有利于笃斯越橘叶片及果实对Pb的吸收,较高的有效Cd含量有利于叶片及果实对Cd的吸收。④大兴安岭地区笃斯越橘叶片中Pb含量高于国家食品标准GB 2762—2017中Pb含量限值,果实中Pb及叶片和果实中Cd含量远小于国家食品标准GB 2762—2017中Pb和Cd含量限值,果实中Pb和Cd潜在生态风险均较低。  结论  Langumir曲线模型可较好的拟合大兴安岭地区笃斯越橘叶片及果实对土壤中Pb和Cd的吸收特性;笃斯越橘果实中Pb和Cd潜在生态风险均较低。
  • 图  1  笃斯越橘土壤、叶片及果实中Pb和Cd的含量

    Figure  1.  Contents of Pb and Cd in soil, leaf and fruit of V. uliginosum

    图  2  笃斯越橘叶片与果实中Pb和Cd含量与土壤有效态Pb和Cd含量的关系图

    Figure  2.  Pb and Cd Concentrations in leaf and fruit and available Pb and Cd concentrations in soil

    图  3  叶片、果实与土壤有效态Pb和Cd浓度比(CRs)与土壤有效态Pb和Cd含量关系

    (a:叶片Pb;b:叶片Cd;c:果实Pb;d:果实Cd)

    Figure  3.  Concentration ratios (CRs) of Pb and Cd in leaf and fruit and the relationships as with soil available Pb and Cd concentrations

    图  4  笃斯越橘叶片与果实Cd和Pb含量与土壤中主要化学性质的pearson相关性

    *表示存在显著性差异(P < 0.05); **表示存在显著性差异(P < 0.01)

    Figure  4.  Pearson correlation between Cd and Pb contents of leaf and fruit of V. uliginosumin and the chemical index of soil

    图  5  Pb和Cd在笃斯越橘叶片与果实中相关性

    Figure  5.  Correlation between Pb and Cd in leaf and fruit of V. uliginosumin

    表  1  笃斯越橘采样点的地理坐标

    Table  1.   Longitude and latitude coordinates of sampling sites of Vaccinium uliginosum L.

    样点
    Sampling site
    经度
    Longitude
    (E)
    纬度
    Latitude
    (N)
    样点
    Sampling site
    经度
    Longitude
    (E)
    纬度
    Latitude
    (N)
    样点
    Sampling site
    经度
    Longitude
    (E)
    纬度
    Latitude
    (N)
    1 123º07ʹ21″ 52º52ʹ13″ 23 123º11ʹ50″ 52º49ʹ01″ 45 123º33ʹ00″ 52º45ʹ30″
    2 123º05ʹ05″ 52º53ʹ39″ 24 123º14ʹ17″ 52º51ʹ02″ 46 123º34ʹ10″ 52º43ʹ28″
    3 123º01ʹ13″ 52º54ʹ54″ 25 123º18ʹ41″ 52º52ʹ09″ 47 123º48ʹ26″ 52º41ʹ49″
    4 122º58ʹ14″ 52º56ʹ25″ 26 123º21ʹ49″ 52º51ʹ16″ 48 123º44ʹ17″ 52º42ʹ04″
    5 122º55ʹ14″ 52º57ʹ22″ 27 123º26ʹ25″ 52º50ʹ33″ 49 123º44ʹ18″ 52º42ʹ06″
    6 122º50ʹ58″ 52º56ʹ31″ 28 123º26ʹ26″ 52º50ʹ34″ 50 123º39ʹ11″ 52º41ʹ31″
    7 123º10ʹ37″ 52º50ʹ29″ 29 123º29ʹ27″ 52º48ʹ50″ 51 123º16ʹ04″ 52º52ʹ04″
    8 123º11ʹ53″ 52º48ʹ57″ 30 123º30ʹ12″ 52º47ʹ12″ 52 123º16ʹ05″ 52º52ʹ03″
    9 123º12ʹ07″ 52º47ʹ10″ 31 123º33ʹ08″ 52º45ʹ32″ 53 123º19ʹ08″ 52º53ʹ37″
    10 123º11ʹ06″ 52º44ʹ25″ 32 123º33ʹ04″ 52º43ʹ31″ 54 123º19ʹ18″ 52º56ʹ25″
    11 123º10ʹ59″ 52º42ʹ14″ 33 122º42ʹ37″ 52º56ʹ52″ 55 123º22ʹ31″ 53º01ʹ07″
    12 123º09ʹ06″ 52º39ʹ26″ 34 122º46ʹ29″ 52º56ʹ00″ 56 123º22ʹ36″ 53º04ʹ06″
    13 123º12ʹ47″ 52º36ʹ25″ 35 122º38ʹ43″ 52º56ʹ46″ 57 123º22ʹ27″ 53º04ʹ07″
    14 123º13ʹ00″ 52º34ʹ12″ 36 122º45ʹ02″ 52º48ʹ13″ 58 123º25ʹ14″ 53º06ʹ45″
    15 123º11ʹ32″ 52º32ʹ07″ 37 122º46ʹ07″ 52º48ʹ52″ 59 123º26ʹ22″ 53º08ʹ55″
    16 123º08ʹ45″ 52º29ʹ14″ 38 122º50ʹ48″ 52º42ʹ11″ 60 123º25ʹ22″ 53º11ʹ29″
    17 123º08ʹ41″ 52º29ʹ14″ 39 122º39ʹ23″ 52º44ʹ55″ 61 123º24ʹ37″ 53º13ʹ52″
    18 123º08ʹ47″ 52º29ʹ13″ 40 122º36ʹ26″ 52º47ʹ59″ 62 123º25ʹ23″ 53º17ʹ24″
    19 123º06ʹ39″ 52º28ʹ10″ 41 122º42ʹ54″ 52º46ʹ03″ 63 123º29ʹ12″ 53º18ʹ54″
    20 123º03ʹ00″ 52º25ʹ35″ 42 123º13ʹ32″ 52º24ʹ37″ 64 123º32ʹ41″ 53º20ʹ19″
    21 123º00ʹ01″ 52º25ʹ26″ 43 123º17ʹ11″ 52º23ʹ03″ 65 123º36ʹ38″ 53º18ʹ02″
    22 122º59ʹ57″ 52º25ʹ28″ 44 123º49ʹ20″ 52º40ʹ43″ 66 123º39ʹ17″ 53º17ʹ53″
    下载: 导出CSV

    表  2  潜在生态风险指数法分级标准

    Table  2.   Classification criteria of the potential ecological risk index

    潜在生态风险$ {E}_{r}^{i} $范围
    Range of potential
    ecological risk $ {E}_{r}^{i} $
    单因子生态风险污染程度
    Degree of single factor
    ecological risk pollution
    $ {E}_{r}^{i} $<40 无风险
    40 ≤ $ {E}_{r}^{i} $ < 80 一般风险
    80 ≤ $ {E}_{r}^{i} $ < 160 中等风险
    160 ≤ $ {E}_{r}^{i} $ < 320 高风险
    320 ≤ $ {E}_{r}^{i} $ 极高风险
    下载: 导出CSV

    表  3  笃斯越橘叶片和果实Pb和Cd含量的描述性统计

    Table  3.   Descriptive statistics of Pb and Cd contents of leaves and fruits of V. uliginosumin

    重金属元素
    Heavy metal element
    最小值
    Minimum value
    (mg kg–1)
    最大值
    Maximum value
    (mg kg–1)
    平均值
    Mean value
    (mg kg–1)
    标准差
    Standard deviation
    (mg kg–1)
    国家食品标准
    National Food Standard
    (mg kg–1)
    叶片Pb 0.063 1.084 0.645 0.311 0.2
    果实Pb 0.011 0.056 0.029 0.011 0.2
    叶片Cd 0.009 0.005 0.021 0.007 0.05
    果实Cd 0.001 0.004 0.002 0.001 0.05
      注:表中数据为笃斯越橘新鲜叶片和果实中Pb和Cd含量,通过测定叶片及果实的含水量换算得出。
      
    下载: 导出CSV

    表  4  笃斯越橘叶片及果实中Pb和Cd的潜在生态风险指数$ {E}_{r}^{i} $的描述性统计

    Table  4.   Descriptive statistics of index of potential ecological risk $ {E}_{r}^{i} $ of Pb and Cd in leaves and fruits of V. uliginosumin

    重金属元素
    Heavy metal element
    最小值
    Minimum value
    最大值
    Maximum value
    平均值
    Mean value
    标准差
    Standard deviation
    叶片Pb 1.58 27.10 16.13 7.78
    果实Pb 0.28 1.40 0.73 0.28
    叶片Cd 5.40 3.00 12.60 4.20
    果实Cd 0.60 2.18 1.20 0.60
    下载: 导出CSV
  • [1] 朱亮亮, 吴 勇, 周 浪, 等. 铜仁土壤-水稻重金属积累效应与安全种植区划[J]. 环境科学, 2021, 42(12): 5988 − 5996. doi: 10.13227/j.hjkx.202104291
    [2] JOMOVA K, VALKO M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283: 65 − 87. doi: 10.1016/j.tox.2011.03.001
    [3] IAEA, International Atomic Energy Agency. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical reports series no. 72. Vienna: International Atomic Energy Agency, 2010.
    [4] SIMON SL, IBRAHIM SA. The plant/soil concentration ratio for calcium, radium, lead and polonium: Evidence for non-linearity with references to substrate concentration[J]. Journal of Environmental Radioactivity, 1987, 5: 123 − 42. doi: 10.1016/0265-931X(87)90028-2
    [5] YAYLAH-ABANUZ G, TUYSUZ N. Heavy metal contamination of soils and tea plants in the eastern Black Sea region, NE Turkey[J]. Environmental Earth Science, 2009, 59: 131 − 44. doi: 10.1007/s12665-009-0011-y
    [6] REDJALA T, STERCKEMAN T, SKIKER S, et al. Contribution of apoplast and symplast to short term nickel uptake by maize and Leptoplax emarginata roots[J]. Environmental and Experimental Botany, 2010, 68: 99 − 106. doi: 10.1016/j.envexpbot.2009.10.010
    [7] TUOVINEN T S, ROIVAINEN P, MAKKONEN S, et al. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species[J]. Science of the Total Environment, 2011, 410-411: 191 − 197. doi: 10.1016/j.scitotenv.2011.09.043
    [8] 郝 瑞. 长白山笃斯越桔的调查研究[J]. 园艺学报, 1979, 6(2): 87 − 93.
    [9] SONG Y Y, SONG C C, RENG J S, et al. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China[J]. Science of the Total Environment, 2018, 625: 640 − 646. doi: 10.1016/j.scitotenv.2017.12.311
    [10] 李亚东, 郝 瑞, 曲路平, 等. 笃斯越桔矿质营养特性研究[J]. 吉林农业大学学报, 1990, 12(1): 24 − 28,116. doi: 10.13327/j.jjlau.1990.01.006
    [11] 白永超, 侯智霞, 王 冲, 等. 大兴安岭笃斯越橘叶片、根系及根系层土壤养分特性研究[J]. 西北农林科技大学学报(自然科学版), 2017, 45(7): 115 − 124. doi: 10.13207/j.cnki.jnwafu.2017.07.015
    [12] BAI J H, CUI B S, DENG W, et al. Plant Pb Contents in Elevation Zones of the Changbai Mountain National Nature Reserve, China[J]. Pedosphere, 2007, 17(2): 229 − 234. doi: 10.1016/S1002-0160(07)60029-0
    [13] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
    [14] 刘 肃, 李酉开. Mehlich3通用浸提剂的研究[J]. 土壤学报, 1995, 32,(2): 132 − 141. doi: 10.3321/j.issn:0564-3929.1995.02.010
    [15] 唐玉琴, 彭良志, 淳长品, 等. 红壤甜橙园土壤和叶片营养元素相关性分析[J]. 园艺学报, 2013, 40(4): 623 − 632. doi: 10.16420/j.issn.0513-353x.2013.04.006
    [16] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40: 1361 − 1403. doi: 10.1021/ja02242a004
    [17] FREUNDLICH H M F. Over the Adsorption in Solution[J]. Journal of Physical Chemistry, 1906, 57: 385 − 470.
    [18] 张继舟, 吕 品, 王立民, 等. 大兴安岭森林土壤重金属含量空间变异与污染评价[J]. 生态学杂志, 2015, 34(3): 810 − 819. doi: 10.13292/j.1000-4890.2015.0110
    [19] KRAUSS M, WILCKE W, KOBZA J, et al. Predicting heavy metal transfer from soil to plant: potential use of Freundlich-type function[J]. J Plant Nutr Soil Sci, 2002, 165: 3 − 8. doi: 10.1002/1522-2624(200202)165:1<3::AID-JPLN3>3.0.CO;2-B
    [20] AZEEZ H H, MANSOUR H H, AHMAD S T. Transfer of natural radioactive nuclides from soil to plant crops[J]. Applied Radiation and Isotopes, 2019, 03(10): 152 − 158.
    [21] MICHOPOULOS P, BALOUTSOS G, ECONMOU A, et al. Biogeochemistry of lead in an urban forest in Athens, Greece. Biogeochemistry, 2005, 73: 345-357.
    [22] 王效瑾, 高 巍, 赵 鹏, 等. 小麦幼苗根系形态对镉胁迫的响应[J]. 农业环境科学学报, 2019, 38(6): 1218 − 1225. doi: 10.11654/jaes.2018-1407
    [23] SOLIS D F, GONZALEZ C M, CARRILLO G R, et al. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system[J]. Journal of Hazardous Materia1s, 2006, (141): 630 − 636.
    [24] 杨惟薇, 刘 敏, 曹美珠, 等. 不同玉米品种对重金属铅镉的富集和转运能力[J]. 生态与农村环境学报, 2014, 30(06): 774 − 779.
    [25] 侯晓龙, 陈加松, 刘爱琴, 等. Pb胁迫对金丝草体内Pb化学形态及细胞分布的影响[J]. 生态与农村环境学报, 2012, 28(3): 271 − 276. doi: 10.3969/j.issn.1673-4831.2012.03.009
    [26] 秦余丽, 熊仕娟, 徐卫红, 等. 纳米沸石对大白菜生长、抗氧化酶活性及镉形态、含量的影响[J]. 环境科学, 2017, 38(3): 1189 − 1200. doi: 10.13227/j.hjkx.201608110
    [27] 叶汉杰, 王立立, 余丹萍, 等. 缺Ca/Fe及盐分胁迫下番茄Pb吸收转运与关键基因的表达关系[J]. 农业环境科学学报, 2019, 38(1): 37 − 43. doi: 10.11654/jaes.2018-0276
    [28] 张继舟, 李云影, 袁 磊, 等. 大兴安岭地区笃斯越橘果实成熟期叶片矿质元素营养诊断研究[J]. 果树学报, 2019, 36(9): 1161 − 1170.
    [29] KRAPP A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces[J]. Current Opinion in Plant Biology, 2015, 25: 115 − 122. doi: 10.1016/j.pbi.2015.05.010
    [30] ZHANG F, LI J, HUANG J, LIN L H, et al. Transcriptome profiling reveals the important role of exogenous nitrogen in alleviating cadmium toxicity in poplar plants[J]. Journal of Plant Growth Regulation, 2017, 36(4): 942 − 956. doi: 10.1007/s00344-017-9699-1
    [31] ALPHA J M, CHEN J, ZHANG G. Effect of nitrogen fertilizer forms on growth, photosynthesis, and yield of rice under cadmium stress[J]. Journal of Plant Nutrition, 2009, 32(2): 306 − 317. doi: 10.1080/01904160802608635
    [32] 周正贵. 白三叶草苗期土壤干旱胁迫生理生化特性研究[D]. 西南大学, 2008.
    [33] SHARMA S S, DIETZ K. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress[J]. Journal of Experimental Botany, 2006, 57(4): 711 − 726. doi: 10.1093/jxb/erj073
    [34] KHOKHAR Y. Soil fertility and nutritional status of Kinnow orchards grown in aridisol of Punjab, India[J]. African Journal of Agricultural Research, 2012, 7(33): 4692 − 4697.
    [35] SHAN Z, SHAH M Z, TARIQ M, et al. Survey of citrus orchards for micronutrients deficiency in Swat valley of North Western Pakistan[J]. Pakistan Journal of Botany, 2012, 42(2): 705 − 710.
    [36] 白永超, 卫旭芳, 陈 露, 等. 笃斯越橘果实、叶片矿质元素和土壤肥力因子与果实品质的多元分析[J]. 中国农业科学, 2018, 51(1): 170 − 181. doi: 10.3864/j.issn.0578-1752.2018.01.016
    [37] 马海洋, 同延安, 路永莉, 等. 诊断施肥综合法(DRIS)在渭北旱塬红富士苹果营养诊断中的应用[J]. 干旱地区农业研究, 2013, 31(2): 84 − 88,99. doi: 10.3969/j.issn.1000-7601.2013.02.016
    [38] GALE E S, SULLIIVAN D M, COGGER C G, et al. Estimating plant-available nitrogen release from manures, composts, and specialty products[J]. Journal of Environment Quality, 2006, 35(6): 2321 − 2332. doi: 10.2134/jeq2006.0062
    [39] SIDDIQUE M, ALI S, JAVED A S. Macronutrient assessment in apple growing region of Punjab[J]. Soil & Environment, 2009, 28(2): 184 − 192.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  15
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-10-22
  • 刊出日期:  2023-06-06

目录

    /

    返回文章
    返回