留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化肥氮素减施条件下生物炭施用对冬瓜产量和品质及土壤氮素淋失的影响

孙海军 吴思 萧洪东 李学文 刘家友 喻敏 施卫明

孙海军, 吴 思, 萧洪东, 李学文, 刘家友, 喻 敏, 施卫明. 化肥氮素减施条件下生物炭施用对冬瓜产量和品质及土壤氮素淋失的影响[J]. 土壤通报, 2023, 54(3): 673 − 681 doi: 10.19336/j.cnki.trtb.2022031402
引用本文: 孙海军, 吴 思, 萧洪东, 李学文, 刘家友, 喻 敏, 施卫明. 化肥氮素减施条件下生物炭施用对冬瓜产量和品质及土壤氮素淋失的影响[J]. 土壤通报, 2023, 54(3): 673 − 681 doi: 10.19336/j.cnki.trtb.2022031402
SUN Hai-jun, WU Si, XIAO Hong-dong, LI Xue-wen, LIU Jia-you, YU Min, SHI Wei-ming. Effect of Biochar Application on Yield and Quality of White Gourd and Soil Nitrogen Leaching with Fertilizer Nitrogen Reduction[J]. Chinese Journal of Soil Science, 2023, 54(3): 673 − 681 doi: 10.19336/j.cnki.trtb.2022031402
Citation: SUN Hai-jun, WU Si, XIAO Hong-dong, LI Xue-wen, LIU Jia-you, YU Min, SHI Wei-ming. Effect of Biochar Application on Yield and Quality of White Gourd and Soil Nitrogen Leaching with Fertilizer Nitrogen Reduction[J]. Chinese Journal of Soil Science, 2023, 54(3): 673 − 681 doi: 10.19336/j.cnki.trtb.2022031402

化肥氮素减施条件下生物炭施用对冬瓜产量和品质及土壤氮素淋失的影响

doi: 10.19336/j.cnki.trtb.2022031402
基金项目: 国家自然科学基金面上项目(31972518);十三五国家重点研发计划课题(2018YFD0800204)
详细信息
    作者简介:

    孙海军(1987−),男,山东临朐人,博士,副教授,主要从事土壤氮循环及其环境效应研究。E-mail: hjsun@njfu.edu.cn

    通讯作者:

    E-mail: hjsun@njfu.edu.cn

  • 中图分类号: S606,S158.5

Effect of Biochar Application on Yield and Quality of White Gourd and Soil Nitrogen Leaching with Fertilizer Nitrogen Reduction

  • 摘要:   目的  明确冬瓜产量、品质及土壤氮素淋失对化肥氮素减施与生物炭施用的响应,为珠三角地区蔬菜生产科学施用氮肥和生物炭提供理论依据。  方法  在佛山市三水区开展2年田间小区试验,试验设对照(Control)、常规施肥(100%N)、减氮30%(70%N)、减氮30% + 生物炭10 t hm−2(70%N + BC10)和减氮30% + 生物炭20 t hm−2(70%N + BC20)5个处理,测定各处理冬瓜产量与品质、土壤氮素淋失与养分指标等的变化。  结果  相较100%N处理,70%N处理2019年冬瓜产量降低27.4%;而70%N + BC10和70%N + BC20处理冬瓜产量较70%N处理2019年分别提高18.2%和32.6%,2020年分别提高13.8%和 46.3%,其产量水平与100%N处理相当,说明施用生物炭对冬瓜有显著增产效果,且单位面积冬瓜数量、单瓜重及瓜长均有所提高。与70%N处理相比,生物炭与等氮量配施各处理冬瓜亚硝酸盐含量降低、维生素C含量提高,可溶性固形物、出汁率、总酸度等指标变化不显著,且以施用10 t hm−2生物炭处理改善冬瓜品质效果更明显;2020年70%N + BC10和70%N + BC20处理的淋溶水硝态氮含量平均降低8.6%和7.2%,70%N + BC10处理的淋溶水平均总氮含量降低4.3%。化肥氮素减施30%条件下,生物炭施用处理土壤pH值提高0.81 ~ 1.55个单位,有机质含量提高4.0% ~ 8.9%。  结论  在化肥氮素减施30%条件下,施用10 t hm−2和20 t hm−2生物炭可获得与常规施氮(不减施氮肥)处理相当的产量,且当生物炭施用量为10 t hm−2时改善冬瓜品质效果明显;同时,施用生物炭能够矫正土壤酸度、提高有机质含量并减少氮素淋溶损失。
  • 图  1  减化肥氮及施用生物炭对2019(a)与2020(b)年冬瓜产量的影响

    不同字母表示处理间差异达显著水平(P < 0.05)。

    Figure  1.  Responses of the yield of white gourd in 2019 (a) and 2020 (b) to inorganic fertilizer-N reduction and biochar application

    图  2  减氮条件下生物炭施用对2019和2020年淋溶水pH(a,b),总氮(c,d)和硝态氮(e,f)含量影响

    不同字母表示同一采样时间各处理间差异达显著水平(P < 0.05)

    Figure  2.  Responses of the leachate pH (a, d), nitrate (c, d), and total N (e, f) concentrations in 2019 and 2020 to the inorganic fertilizer-N reduction and biochar application

    表  1  减化肥氮条件下施用生物炭对冬瓜果实、茎和叶总氮含量的影响(2020年)

    Table  1.   Influences of inorganic fertilizer-N reduction and biochar application on total N contents of fruit, steam and leaf of white gourd

    处理
    Treatment
    总氮含量
    Total N content
    果实 (g kg–1)
    Fruit
    茎 (g kg–1)
    Steam
    叶 (g kg–1)
    Leaf
    Control 27.59 ± 3.50 a 23.26 ± 2.70 a 2.26 ± 0.26 c
    N100% 26.82 ± 0.52 a 21.64 ± 0.82 ab 2.47 ± 0.10 bc
    N70% 29.00 ± 1.86 a 20.83 ± 2.60 ab 2.86 ± 0.11 a
    N70% + BC10 25.78 ± 2.51 a 20.25 ± 1.43 ab 2.56 ± 0.01 b
    N70% + BC20 28.63 ± 3.41 a 18.91 ± 0.54 b 2.60 ± 0.09 b
      注:同列不同字母表示处理间差异为显著水平(P < 0.05)。
    下载: 导出CSV

    表  2  冬瓜成瓜数、单瓜重和瓜长对化肥氮减施和生物炭施用的响应

    Table  2.   Responses of fruit number, weight and length per fruit of white gourd to inorganic fertilizer-N reduction and biochar application

    处理
    Treatment
    2019年
    Year 2019
    2020年
    Year 2020
    成瓜数
    Fruit number
    (个 hm–2
    单瓜重
    Weight of per fruit
    (kg 个–1
    瓜长
    Fruit length
    (cm 个–1
    成瓜数
    Fruit number
    (个 hm–2
    单瓜重
    Weight of per fruit
    (kg 个–1
    瓜长
    Fruit length
    (cm 个–1
    Control 7279 ± 721 b 14.12 ± 0.46 d 84.50 ± 1.50 b 5954 ± 380 c 15.47 ± 0.21 b 80.10 ± 3.45 a
    100%N 7681 ± 652 ab 19.19 ± 0.36 a 87.20 ± 0.60 ab 6841 ± 507 bc 17.85 ± 1.80 a 84.29 ± 4.71 a
    70%N 6896 ± 804 b 15.67 ± 0.78 c 87.50 ± 2.30 ab 6974 ± 267 abc 16.60 ± 0.44 ab 84.42 ± 0.66 a
    70%N + BC10 8058 ± 158 ab 17.62 ± 1.06 b 90.97 ± 2.97 a 7234 ± 234 ab 18.34 ± 1.97 a 86.27 ± 5.88 a
    70%N + BC20 8644 ± 311 a 18.15 ± 0.39 ab 89.47 ± 1.59 a 7962 ± 993 a 16.54 ± 0.17 ab 83.34 ± 3.52 a
      注:同列不同字母表示处理间差异达显著水平(P < 0.05)。
    下载: 导出CSV

    表  3  减化肥氮条件下生物炭施用对冬瓜品质的影响

    Table  3.   Impacts of inorganic fertilizer-N reduction and biochar application on selected qualities of white gourd

    年份
    Year
    处理
    Treatment
    总糖
    Total sugar
    (g kg−1)
    亚硝酸盐Nitrite
    (mg kg−1)
    硝酸盐
    Nitrate
    (mg kg−1)
    维生素C
    Vitamin C
    (mg kg−1)
    可溶性固形物
    Soluble solid
    (%)
    出汁率
    Juice yield
    (%)
    总酸度
    Total acidity
    (%)
    2019年
    Control 17.88 ± 5.11 b 0.12 ± 0.02 b 1.02 ± 0.00 a 69.21 ± 9.01 a
    100%N 35.08 ± 3.21 a 0.29 ± 0.00 a 1.01 ± 0.00 a 70.35 ± 4.16 a
    70%N 34.22 ± 4.79 a 0.12 ± 0.00 b 1.02 ± 0.01 a 64.25 ± 0.78 a
    70%N + BC10 34.37 ± 2.61 a 0.09 ± 0.02 b 1.02 ± 0.01 a 73.79 ± 9.76 a
    70%N + BC20 22.10 ± 0.25 b 0.11 ± 0.03 b 1.01 ± 0.00 a 71.01 ± 5.46 a
    2020年 Control 14.13 ± 0.36 a 0.27 ± 0.02 ab 654.94 ± 46.76 a 174.71 ± 57.04 c 3.20 ± 0.28 a 5.64 ± 0.10 a
    100%N 16.63 ± 2.40 a 0.25 ± 0.00 b 681.11 ± 59.23 a 289.98 ± 49.40 a 3.43 ± 0.51 a 5.60 ± 0.04 a
    70%N 14.65 ± 1.14 a 0.29 ± 0.02 a 726.48 ± 17.80 a 240.58 ± 39.60 abc 3.35 ± 0.30 a 5.58 ± 0.07 a
    70%N + BC10 15.78 ± 0.30 a 0.26 ± 0.00 b 766.96 ± 74.33 a 265.28 ± 24.70 ab 3.28 ± 0.20 a 5.55 ± 0.08 a
    70%N + BC20 15.27 ± 0.78 a 0.26 ± 0.01 b 658.78 ± 97.36 a 191.58 ± 14.69 bc 3.17 ± 0.31 a 5.53 ± 0.18 a
      注:同一年度同列不同字母表示处理间差异达显著水平(P < 0.05)。
    下载: 导出CSV

    表  4  减化肥氮及生物炭的施用对2020年冬瓜收获后土壤性质的影响

    Table  4.   Effects of fertilizer-N reduction and biochar application on soil properties after white gourd harvested in 2020

    处理
    Treatment
    pH有机质(%)
    Organic matter
    总氮(g kg–1
    Total N
    总磷(g kg–1
    Total P
    Control 6.44 ± 0.19 b 2.36 ± 0.09 a 1.47 ± 0.13 a 0.32 ± 0.01 a
    100%N 5.19 ± 0.21 d 2.31 ± 0.06 a 1.48 ± 0.16 a 0.30 ± 0.01 a
    70%N 5.61 ± 0.09 c 2.24 ± 0.02 a 1.47 ± 0.14 a 0.32 ± 0.05 a
    70%N + BC10 6.42 ± 0.03 b 2.33 ± 0.20 a 1.48 ± 0.05 a 0.28 ± 0.04 a
    70%N + BC20 7.16 ± 0.10 a 2.44 ± 0.05 a 1.50 ± 0.19 a 0.30 ± 0.02 a
      注:同列不同字母表示处理间差异达显著水平(P < 0.05)。
    下载: 导出CSV
  • [1] Wu Y H, Wang E R, Miao C H. Fertilizer use in China: The role of agricultural support policies[J]. Sustainability, 2019, 11(16): 4391. doi: 10.3390/su11164391
    [2] 黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策[J]. 植物营养与肥料学报, 2017, 23(6): 1480 − 1493. doi: 10.11674/zwyf.17366
    [3] 丁武汉, 雷豪杰, 徐 驰, 等. 我国设施菜地表观氮平衡分析及其空间分布特征[J]. 农业资源与环境学报, 2020, 37(3): 353 − 360. doi: 10.13254/j.jare.2019.0493
    [4] Shi W M, Yao J, Yan F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China[J]. Nutrient Cycling in Agroecosystems, 2009, 83(1): 73 − 84. doi: 10.1007/s10705-008-9201-3
    [5] 杨荣全, 谢立勇, 郑益旻, 等. 不同水肥措施下华北露地菜地氮淋溶特征[J]. 中国生态农业学报(中英文), 2021, 29(1): 176 − 186.
    [6] 万 君. 长三角地区农业面源污染治理存在的问题及对策[D]. 合肥: 安徽农业大学, 2017.
    [7] 萧洪东, 雷 孝, 涂金智, 等. 玉米填闲种植对珠三角菜地土壤氮磷吸收淋失阻控及其对后茬蔬菜生产影响的研究[J]. 生态环境学报, 2020, 29(11): 2199 − 2205.
    [8] Liu W K, Yang Q C, Du L F. Soilless cultivation for high-quality vegetables with biogas manure in China: Feasibility and benefit analysis[J]. Renewable Agriculture and Food Systems, 2009, 24(4): 300 − 307. doi: 10.1017/S1742170509990081
    [9] Zhong W K, Hu C M, Wang M J. Nitrate and nitrite in vegetables from north China: content and intake[J]. Food Additives & Contaminants, 2002, 19(12): 1125 − 1129.
    [10] Zhao H, Li X Y, Jiang Y. Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production[J]. Sustainability, 2019, 11(6): 1513. doi: 10.3390/su11061513
    [11] 李 欢, 杨清夏, 李 扬, 等. 减氮及增施腐殖酸对玉米产量和氮肥利用率的影响[J]. 生态学杂志, 2021, 40(5): 1331 − 1339. doi: 10.13292/j.1000-4890.202105.028
    [12] 张学军, 赵 营, 陈晓群, 等. 滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响[J]. 中国农业科学, 2007, 40(11): 2535 − 2545. doi: 10.3321/j.issn:0578-1752.2007.11.019
    [13] Bai X L, Zhang Z B, Cui J J, et al. Strategies to mitigate nitrate leaching in vegetable production in China: a meta-analysis[J]. Environmental science and pollution research international, 2020, 27(15): 18382 − 18391. doi: 10.1007/s11356-020-08322-1
    [14] Xiao H D, Fan X, Sun H J, et al. The benefit of leafy vegetable as catch crop to mitigate N and P leaching losses in intensive plastic-shed production system[J]. Journal of Soils and Sediments, 2021, 21(6): 2253 − 2261. doi: 10.1007/s11368-021-02930-1
    [15] Min J, Sun H J, Kronzucker H J, et al. Comprehensive assessment of the effects of nitrification inhibitor application on reactive nitrogen loss in intensive vegetable production systems[J]. Agriculture, Ecosystems & Environment, 2021, 307: 107227.
    [16] Lehmann J, Joseph S. Biochar for Environmental Management: Science, Technology and Implementation [M]. London: Routledge, 2015.
    [17] Mukherjee A, Zimmerman A R, Harris W. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2011, 163(3): 247 − 255.
    [18] 陈云梅, 赵 欢, 肖厚军, 等. 减氮配施有机物料对玉米-白菜轮作系统作物产量、光合特性和产品品质的影响[J]. 应用生态学报, 2021, 32(12): 4391 − 4400. doi: 10.13287/j.1001-9332.202112.015
    [19] Sun H J, Jeyakumar P, Xiao H D, et al. Biochar can increase Chinese cabbage (Brassica oleracea L. ) yield, decrease nitrogen and phosphorus leaching losses in intensive vegetable soil[J]. Phyton-International Journal of Experimental Botany, 2021, 91(1): 197 − 206.
    [20] 牛亚茹, 付祥峰, 邱良祝, 等. 施用生物质炭对大棚土壤特性、黄瓜品质和根结线虫病的影响[J]. 土壤, 2017, 49(1): 57 − 62. doi: 10.13758/j.cnki.tr.2017.01.009
    [21] Sun H J, Shi W M, Zhou M Y, et al. Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil[J]. Plant, Soil and Environment, 2019, 65(2): 83 − 89. doi: 10.17221/525/2018-PSE
    [22] Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010, 333(1): 117 − 128.
    [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
    [24] 李玉涛. 温室番茄配施氮肥和双氰胺对氮淋失及氧化亚氮排放和氨挥发的影响[D]. 保定: 河北农业大学, 2015.
    [25] Mahajan G, Singh K G. Response of greenhouse tomato to irrigation and fertigation[J]. Agricultural water management, 2006, 84(1-2): 202 − 206. doi: 10.1016/j.agwat.2006.03.003
    [26] 徐 捷. 不同施肥模式下甘蓝氮磷利用及流失特征和规律的研究[D]. 杭州: 浙江大学, 2013.
    [27] 黄连喜, 魏 岚, 李衍亮, 等. 花生壳生物炭对土壤改良、蔬菜增产及其持续效应研究[J]. 中国土壤与肥料, 2018, (1): 101 − 107. doi: 10.11838/sfsc.20180117
    [28] 陈婧婷, 武沛然, 刘新宇, 等. 减氮条件下生物炭对甜菜盐碱胁迫的缓解效应[J]. 植物营养与肥料学报, 2020, 26(8): 1492 − 1500. doi: 10.11674/zwyf.19503
    [29] 张登晓, 周惠民, 潘根兴, 等. 城市园林废弃物生物质炭对小白菜生长、硝酸盐含量及氮素利用率的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1569 − 1576. doi: 10.11674/zwyf.2014.0628
    [30] 刘玉学, 王耀锋, 吕豪豪, 等. 不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1438 − 1444. doi: 10.11674/zwyf.2013.0618
    [31] 许 堃. 施用生物炭对油菜氮素吸收和利用的影响[D]. 沈阳: 沈阳农业大学, 2018.
    [32] 李 冬, 陈 蕾, 夏 阳, 等. 生物炭改良剂对小白菜生长及低质土壤氮磷利用的影响[J]. 环境科学学报, 2014, 34(9): 2384 − 2391. doi: 10.13671/j.hjkxxb.2014.0550
    [33] Padayatty S J, Katz A, Wang Y, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention[J]. Journal of the American college of nutrition, 2003, 22(1): 18 − 35. doi: 10.1080/07315724.2003.10719272
    [34] 翁柔丹. 快速检测蔬菜中硝酸盐含量的氯化钒粉剂法研究[D]. 广州: 华南农业大学, 2016.
    [35] 李建勇, 陆利民, 张瑞明, 等. 小白菜硝酸盐含量及其主要影响因素研究[J]. 上海农业学报, 2013, 29(5): 116 − 118. doi: 10.3969/j.issn.1000-3924.2013.05.027
    [36] Huang R, Wang Y Y, Liu J, et al. Partial substitution of chemical fertilizer by organic materials changed the abundance, diversity, and activity of nirS-type denitrifying bacterial communities in a vegetable soil[J]. Applied Soil Ecology, 2020, 152: 103589. doi: 10.1016/j.apsoil.2020.103589
    [37] Almaroai Y A, Eissa M A. Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil[J]. Scientia Horticulturae, 2020, 265: 109210. doi: 10.1016/j.scienta.2020.109210
    [38] 李 珊, 李永峰, 王之波, 等. 蔬菜、腌菜亚硝酸盐测定及VC对亚硝酸盐阻断[J]. 中国公共卫生, 2004, 20(3): 357. doi: 10.3321/j.issn:1001-0580.2004.03.060
    [39] 罗德涛, 聂呈荣. 不同氮肥及用量对甘薯叶亚硝酸盐、硝酸盐含量的影响[J]. 佛山科学技术学院学报(自然科学版), 2015, 33(6): 5 − 9. doi: 10.13797/j.cnki.jfosu.1008-0171.2015.0109
    [40] Ding Y, Liu Y X, Wu W X, et al. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns[J]. Water, Air, & Soil Pollution, 2010, 213(1): 47 − 55.
    [41] 高德才, 张 蕾, 刘 强, 等. 旱地土壤施用生物炭减少土壤氮损失及提高氮素利用率[J]. 农业工程学报, 2014, 30(6): 54 − 61. doi: 10.3969/j.issn.1002-6819.2014.06.007
    [42] Zhang M, Liu Y L, Wei Q Q, et al. Biochar enhances the retention capacity of nitrogen fertilizer and affects the diversity of nitrifying functional microbial communities in karst soil of southwest China[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112819. doi: 10.1016/j.ecoenv.2021.112819
    [43] 肖 茜, 张洪培, 沈玉芳, 等. 生物炭对黄土区土壤水分入渗、蒸发及硝态氮淋溶的影响[J]. 农业工程学报, 2015, 31(16): 128 − 134. doi: 10.11975/j.issn.1002-6819.2015.16.018
    [44] Lv Y, Zhao X Y, Shu Y Q, et al. Effect of biochar on the migration and leaching of phosphorus in black soil[J]. Paddy and Water Environment, 2021, 19(1): 1 − 9. doi: 10.1007/s10333-020-00815-6
    [45] 高海英, 何绪生, 耿增超, 等. 生物炭及炭基氮肥对土壤持水性能影响的研究[J]. 中国农学通报, 2011, 27(24): 207 − 213.
    [46] 黄 剑, 张庆忠, 杜章留, 等. 施用生物炭对农田生态系统影响的研究进展[J]. 中国农业气象, 2012, 33(2): 232 − 239.
    [47] 陈庆华, 许 卓, 汤计超, 等. 生物炭对土壤氮磷流失和油菜产量的影响[J]. 中国农业科技导报, 2019, 21(11): 130 − 137. doi: 10.13304/j.nykjdb.2018.0585
    [48] 吴 丹, 林静雯, 张 岩, 等. 牛粪生物炭对土壤氮肥淋失的抑制作用[J]. 土壤通报, 2015, 46(2): 458 − 463.
    [49] 陈翠玲, 张麦生, 杨雪芹, 等. 潮土和石灰性褐土缓冲性能研究[J]. 河南农业科学, 2004, (6): 56 − 57. doi: 10.3969/j.issn.1004-3268.2004.06.019
    [50] Li H X, Lu X Q, Xu Y, et al. How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis[J]. Geoderma, 2019, 352: 96 − 103. doi: 10.1016/j.geoderma.2019.06.006
    [51] 胡乃娟, 韩新忠, 杨敏芳, 等. 秸秆还田对稻麦轮作农田活性有机碳组分含量、酶活性及产量的短期效应[J]. 植物营养与肥料学报, 2015, 21(2): 371 − 377. doi: 10.11674/zwyf.2015.0211
    [52] 王传杰, 王齐齐, 徐 虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征[J]. 生态学报, 2018, 38(11): 3848 − 3858.
    [53] 于天一, 孙秀山, 石程仁, 等. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志, 2014, 33(11): 3137 − 3143. doi: 10.13292/j.1000-4890.20141022.005
    [54] 石晓宇, 张 婷, 贾 浩, 等. 生物炭对设施土壤化学性质及黄瓜产量品质的影响[J]. 农学学报, 2019, 9(4): 59 − 65. doi: 10.11923/j.issn.2095-4050.cjas18060017
    [55] 李 程, 李小平. 生物质炭制备及不同施用量对土壤碳库和植物生长的影响[J]. 南方农业学报, 2015, 46(10): 1786 − 1791. doi: 10.3969/j:issn.2095-1191.2015.10.1786
    [56] 王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013, 32(5): 768 − 780. doi: 10.7524/j.issn.0254-6108.2013.05.008
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  12
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 录用日期:  2022-08-05
  • 修回日期:  2022-06-21
  • 刊出日期:  2023-06-06

目录

    /

    返回文章
    返回