留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮肥减施和秸秆还田对土壤固定态铵含量的影响

李明嵘 马雪松 周锋 陈智文 何红波 滕泽宇

李明嵘, 马雪松, 周 锋, 陈智文, 何红波, 滕泽宇. 氮肥减施和秸秆还田对土壤固定态铵含量的影响[J]. 土壤通报, 2023, 54(3): 654 − 661 doi: 10.19336/j.cnki.trtb.2022030905
引用本文: 李明嵘, 马雪松, 周 锋, 陈智文, 何红波, 滕泽宇. 氮肥减施和秸秆还田对土壤固定态铵含量的影响[J]. 土壤通报, 2023, 54(3): 654 − 661 doi: 10.19336/j.cnki.trtb.2022030905
LI Ming-rong, MA Xue-song, ZHOU Feng, CHEN Zhi-wen, HE Hong-bo, TENG Ze-yu. Effects of Fertilizer Nitrogen Reduction and Crop Residue Return on Soil Fixed Ammonium Content[J]. Chinese Journal of Soil Science, 2023, 54(3): 654 − 661 doi: 10.19336/j.cnki.trtb.2022030905
Citation: LI Ming-rong, MA Xue-song, ZHOU Feng, CHEN Zhi-wen, HE Hong-bo, TENG Ze-yu. Effects of Fertilizer Nitrogen Reduction and Crop Residue Return on Soil Fixed Ammonium Content[J]. Chinese Journal of Soil Science, 2023, 54(3): 654 − 661 doi: 10.19336/j.cnki.trtb.2022030905

氮肥减施和秸秆还田对土壤固定态铵含量的影响

doi: 10.19336/j.cnki.trtb.2022030905
基金项目: 中国科学院战略性先导科技专项(XDA28010301,XDA28080105)和国家自然科学基金项目(42177324)资助
详细信息
    作者简介:

    李明嵘(1993−),男,甘肃天水人,硕士,主要从事土壤养分转化微生物过程及其调控研究。E-mail: Lijx109@126.com

    通讯作者:

    E-mail: sdczw4489@163.com

    E-mail: hehongbo@iae.ac.cn

  • 中图分类号: S154.34

Effects of Fertilizer Nitrogen Reduction and Crop Residue Return on Soil Fixed Ammonium Content

  • 摘要:   目的  固定态铵作为土壤氮素的暂存库,其含量的变化能够影响土壤的保氮供氮功能,而深入探究氮肥减施对土壤固定态铵的影响及其对秸秆还田的响应,可为优化农田氮肥管理提供理论依据。  方法  依托位于中国东北黑土区玉米种植系统连续9年全量玉米秸秆覆盖归还的保护性耕作试验平台,通过设置玉米秸秆不还田(S0)、秸秆还田量33%(S33)和秸秆全量覆盖还田(S100)3个秸秆还田量处理,以及240 kg hm−2(N240)、190 kg hm−2(N190)、135 kg hm−2(N135)、0 kg hm−2(N0)4个氮素施用水平,研究氮素减施3年后土壤固定态铵总量的变化以及不同秸秆还田量对固定态铵的影响。  结果  秸秆不还田时,土壤固定态铵总量随施氮量降低而逐渐下降,且在不施氮肥处理(N0)时显著低于施氮肥处理;在S33N190时土壤-作物系统出现氮素缺乏,并且随施氮量的下降土壤固定态铵降低量与氮素缺乏量之间具有显著的正相关关系。在所有氮肥水平,秸秆还田尤其是全量秸秆还田均有利于缓解固定态铵的释放,但在N135处理时秸秆效应较弱。整体上,与对照相比,S100N190处理土壤固定态铵的降低量最小。另外,秸秆还田降低了施肥处理土壤硝态氮含量。  结论  在氮肥减施条件下,土壤固定态铵可以释放供氮,氮肥减施20%配合免耕全量秸秆覆盖还田可在保持土壤固定态铵库相对稳定的基础上,维持土壤-作物系统的氮素平衡。
  • 图  1  2016 ~ 2018年玉米植株地上部累积N素吸收量变化(a)和N素输入与输出的相对变化量(b)

    S0:秸秆不还田,S33:秸秆还田量33%;S100:秸秆全量覆盖还田;N0:施氮量为0,N135:施氮量为135 kg hm–2,N190:施氮量为190 kg hm–2,N240:施氮量为240 kg hm–2。不同大写字母代表不考虑秸秆处理情况下,不同N肥处理间差异显著(P < 0.05);不同小写字母代表在同一N肥处理下,不同秸秆还田量之间差异显著(P < 0.05)。

    Figure  1.  Changes of uptake of N by maize aboveground (a), the relative change between N input and aboveground uptake (b) from 2016 to 2018

    图  2  2018年土壤全N (a)、NH4 + -N (b)与NO3--N (c)含量的变化

    S0:秸秆不还田,S33:秸秆还田量33%;S100:秸秆全量覆盖还田;N0:施氮量为0,N135:施氮量为135 kg hm–2,N190:施氮量为190 kg hm–2,N240:施氮量为240 kg hm–2。不同大写字母代表不考虑秸秆处理情况下,不同N肥处理间差异显著(P < 0.05)。

    Figure  2.  Changes of total soil N (a), NH4 + -N (b) and NO3--N (c) in 2018

    图  3  固定态铵相对变化量与N素输入和输出相对变化量以及施N量之间的相关关系

    (a)代表无秸秆还田(S0)时固定态铵相对变化量与N素输入和输出相对变化量之间的线性回归关系,(b)代表无秸秆还田(S0)时固定态铵相对变化量与N肥减施之间的线性回归关系;(c)代表秸秆还田33%(S33)时固定态铵相对变化量与N素输入和输出相对变化量之间的线性回归关系,(d)代表秸秆还田33%(S33)时固定态铵相对变化量与N肥减施之间的线性回归关系;(e)代表秸秆全量覆盖还田(S100)时固定态铵相对变化量与N素输入和输出相对变化量之间的线性回归关系,(f)代表秸秆全量覆盖还田(S100)时固定态铵相对变化量与N肥减施之间的线性回归关系。

    Figure  3.  Correlation between relative change of fixed ammonium with nitrogen input and output

    表  1  各处理土壤(0 ~ 20 cm)固定态铵量(kg hm–2

    Table  1.   The stocks(kg hm–2)of fixed ammonium in soil (0 - 20 cm)

    处理
    Treatment
    S0S33S100
    N0 393.79 ± 16.26 Aa 424.41 ± 21.56 Aa 443.14 ± 10.45 Ab
    N135 409.93 ± 25.99 Ba 428.79 ± 15.93 Aa 435.13 ± 28.57 Aa
    N190 419.54 ± 11.75 Ba 429.66 ± 13.05 Aa 452.45 ± 14.63 Ab
    N240 427.35 ± 14.69 Ba 429.74 ± 14.94 Aa 459.66 ± 29.95 Ab
      注:不同大写字母代表同一秸秆还田下N肥处理间差异显著(P < 0.05),不同小写字母代表在同一N肥处理下,不同秸秆还田量之间差异显著(P < 0.05)
    下载: 导出CSV

    表  2  固定态铵相对变化量(kg hm–2

    Table  2.   Changes of fixed ammonium amounts (kg hm–2)

    处理
    Treatment
    S0S33S100
    N0 −65.87 −35.25 −30.14
    N135 −49.73 −30.87 −24.53
    N190 −40.12 −30.00 −7.21
    N240 −32.31 −17.32 0
      注:对照为常规施肥和全量秸秆还田处理(S100N240)。
    下载: 导出CSV
  • [1] 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000, (1): 1 − 6.
    [2] 腾珍珍, 鲁彩艳, 袁 磊, 等. 免耕秸秆覆盖条件下尿素来源铵态氮和硝态氮的累积与垂直运移过程[J]. 土壤通报, 2018, 49(4): 919 − 928.
    [3] Yu C Q, Huang X, Chen H, et al. Managing nitrogen to restore water quality in China[J]. Nature, 2019, 567(7749): 516 − 520. doi: 10.1038/s41586-019-1001-1
    [4] Lu C Y, Zhang X D, Chen X, et al. Fixation of labeled (15NH4)2SO4 and its subsequent release in black soil of Northeast China over consecutive crop cultivation[J]. Soil and Tillage Research, 2010, 106: 329 − 334. doi: 10.1016/j.still.2009.11.009
    [5] Lu C Y, Chen H H. , Teng Z Z, et al. Effects of N fertilization and maize straw on the dynamics of soil organic N and amino acid N derived from fertilizer N as indicated by 15N labeling[J]. Geoderma, 2018, 321: 118 − 126. doi: 10.1016/j.geoderma.2018.02.014
    [6] Nieder R, Benbi D K, Scherer H W. Fixation and defixation of ammonium in soils: a review[J]. Biology and fertility of Soils, 2011, 47(1): 1 − 14. doi: 10.1007/s00374-010-0506-4
    [7] 敖 曼, 张旭东, 关义新. 东北黑土保护性耕作技术的研究与实践[J]. 中国科学院院刊, 2021, 36(10): 1203 − 1215. doi: 10.16418/j.issn.1000-3045.20210816002
    [8] Abbasi M K, Khizar A. Microbial biomass carbon and nitrogen transformations in a loam soil amended with organic-inorganic N sources and their effect on growth and N-uptake in maize[J]. Ecological Engineering, 2012, 39: 123 − 132. doi: 10.1016/j.ecoleng.2011.12.027
    [9] Cao Y S, Sun H F, Zhang J N, et al. Effects of wheat straw addition on dynamics and fate of nitrogen applied to paddy soils[J]. Soil and Tillage Research, 2018, 178: 92 − 98. doi: 10.1016/j.still.2017.12.023
    [10] Pan F F, Yu W T, Ma Q, et al. Do organic amendments improve the synchronism between soil N supply and wheat demand[J]. Applied Soil Ecology, 2018, 125: 184 − 191. doi: 10.1016/j.apsoil.2018.01.006
    [11] 侯宁宁. 松辽平原玉米带黑土铵的固定和吸附特性研究[D]. 长春: 吉林农业大学, 2006.
    [12] 文启孝, 程励励, 陈碧云. 我国土壤中的固定态铵[J]. 土壤学报, 2000, 37(2): 145 − 156. doi: 10.3321/j.issn:0564-3929.2000.02.001
    [13] 郭鹏程. 铵态氮肥在不同土壤中被粘土矿物固定的研究[J]. 沈阳农学院学报, 1983, (2): 1 − 9.
    [14] 孙 艳, 吴守仁, 吕家珑. 塿土固定态铵容量及蓄氮供氮能力的研究[J]. 干旱地区农业研究, 2000, (3): 8 − 14. doi: 10.3321/j.issn:1000-7601.2000.03.002
    [15] 廖继佩, 李法云, 张杨珠, 等. 湖南稻田土壤固定态铵总量的季节变化及生物有效性[J]. 应用生态学报, 2003, (10): 1665 − 1668. doi: 10.3321/j.issn:1001-9332.2003.10.016
    [16] Liu Y, Zhang B, Li C, et al. Long-term fertilization influences on clay mineral composition and ammonium adsorption in a rice paddy soil[J]. Soil Science Society of America Journal, 2008, 72(6): 1580 − 1590. doi: 10.2136/sssaj2007.0040
    [17] 蒋丽萍, 李国芳, 苗中琴, 等. 不同包膜类型控释氮肥减施对冬小麦产量及氮素利用效率的影响[J]. 山东农业科学, 2020, 52(2): 64 − 69. doi: 10.14083/j.issn.1001-4942.2020.02.012
    [18] 范靖尉, 白晋华, 任寰宇, 等. 减氮和施生物炭对华北夏玉米-冬小麦田土壤CO2和N2O排放的影响[J]. 中国农业气象, 2016, (2): 121 − 130. doi: 10.3969/j.issn.1000-6362.2016.02.001
    [19] Tang Y, Wang X Z, Zhao H T, et al. Effect of Potassium and C/N Ratios on Conversion of NH4 + in Soils[J]. Pedosphere, 2008, 18(4): 539 − 544. doi: 10.1016/S1002-0160(08)60045-4
    [20] Pan F F, Yu W T, Ma Q, et al. Influence of 15N-labeled ammonium sulfate and straw on nitrogen retention and supply in different fertility soils[J]. Biology and fertility of soils, 2017, 53(3): 303 − 313. doi: 10.1007/s00374-017-1177-1
    [21] 赵士诚, 曹彩云, 李科江, 等. 长期秸秆还田对华北潮土肥力、氮库组分及作物产量的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1441 − 1449. doi: 10.11674/zwyf.2014.0614
    [22] 赵 伟, 陈雅君, 王宏燕, 等. 不同秸秆还田方式对黑土土壤氮素和物理性状的影响[J]. 玉米科学, 2012, 20(6): 98 − 102. doi: 10.3969/j.issn.1005-0906.2012.06.020
    [23] 王喜艳, 窦 森, 张恒明, 等. 玉米秸秆持水深埋对辽西瘠薄耕地土壤养分及玉米产量的影响[J]. 西北农业学报, 2014, 23(5): 76 − 81. doi: 10.7606/j.issn.1004-1389.2014.05.013
    [24] 王如芳, 张吉旺, 董树亭, 等. 我国玉米主产区秸秆资源利用现状及其效果[J]. 应用生态学报, 2011, 22(6): 1504 − 1510.
    [25] Gai X, Liu H, Liu J, et al. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain[J]. Science of the Total Environment, 2019, 650: 2251 − 2259. doi: 10.1016/j.scitotenv.2018.09.275
    [26] Yuan L, Chen X, Jia J, et al. Stover mulching and inhibitor application maintain crop yield and decrease fertilizer N input and losses in no-till cropping systems in Northeast China[J]. Agriculture, Ecosystems and Environment, 2021, 312: 107360. doi: 10.1016/j.agee.2021.107360
    [27] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Science of the United States of America, 2009, 106: 3041 − 3046. doi: 10.1073/pnas.0813417106
    [28] 高亚军, 黄东迈, 朱培立, 等. 稻麦轮作条件下长期不同土壤管理对氮素肥力的影响[J]. 土壤学报, 2000, 37(4): 456 − 462. doi: 10.3321/j.issn:0564-3929.2000.04.004
    [29] 周江明, 徐大连, 薛才余. 稻草还田综合效益研究[J]. 中国农学通报, 2002, 18(4): 7 − 10. doi: 10.3969/j.issn.1000-6850.2002.04.003
    [30] 李俊杰, 邹洪琴, 许发辉, 等. 土壤微生物量氮对小麦各生育期氮素形态的调控[J]. 植物营养与肥料学报, 2021, 27(8): 1321 − 1329. doi: 10.11674/zwyf.2021044
    [31] 顾敏京, 左文刚, 严漪云, 等. 氮肥管理对秸秆全量还田双季晚稻土壤固定态铵的影响[J]. 扬州大学学报(农业与生命科学版), 2017, 38(2): 69 − 74, 81.
    [32] Ma X, Zhang W, Zhang X, et al. Dynamics of microbial necromass in response to reduced fertilizer application mediated by crop residue return[J]. Soil Biology and Biochemistry, 2022, 165: 108512. doi: 10.1016/j.soilbio.2021.108512
    [33] 曲瑞姣. 秸秆还田对肥料来源固定态铵在土壤中年际动态变化的影响[D]. 北京: 中国科学院大学, 2015.
    [34] Kowalenko C G, Cameron D R. Nitrogen transformations in an incubated soil as affected by combinations of moisture content and temperature and adsorption-fixation of ammonium[J]. Canadian Journal of Soil Science, 1976, 56: 63 − 70. doi: 10.4141/cjss76-010
    [35] 刘淑芳, 马 强, 徐永刚, 等. 三种典型土壤固定态铵及其释放研究初探[J]. 土壤通报, 2018, 49(4): 882 − 888. doi: 10.19336/j.cnki.trtb.2018.04.18
    [36] Kowalenko C G. Nitrogen transformations and transport over 17 months in field fallow microplots using 15N[J]. Canadian Journal of Soil Science, 1978, 58: 69 − 76. doi: 10.4141/cjss78-007
    [37] Chen B, Liu E, Tian Q, et al. Soil nitrogen dynamics and crop residues. A review[J]. Agronomy for Sustainable Development, 2014, 34: 429 − 442. doi: 10.1007/s13593-014-0207-8
    [38] Shindo H, Nishio T. Immobilization and remineralization of N following addition of wheat straw into soil: determination of gross N transformation rates by 15N-ammonium isotope dilution technique[J]. Soil Biology and Biochemistry, 2005, 37: 425 − 432. doi: 10.1016/j.soilbio.2004.07.027
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  28
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 录用日期:  2022-08-05
  • 修回日期:  2022-05-08
  • 刊出日期:  2023-06-06

目录

    /

    返回文章
    返回