留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非灌溉季节生物炭施用对滴灌棉田土壤团聚体及其碳含量的影响

邹瑞晗 王振华 朱艳 宗睿 陈睿

邹瑞晗, 王振华, 朱 艳, 宗 睿, 陈 睿. 非灌溉季节生物炭施用对滴灌棉田土壤团聚体及其碳含量的影响[J]. 土壤通报, 2023, 54(3): 626 − 635 doi: 10.19336/j.cnki.trtb.2021122701
引用本文: 邹瑞晗, 王振华, 朱 艳, 宗 睿, 陈 睿. 非灌溉季节生物炭施用对滴灌棉田土壤团聚体及其碳含量的影响[J]. 土壤通报, 2023, 54(3): 626 − 635 doi: 10.19336/j.cnki.trtb.2021122701
ZOU Rui-han, WANG Zhen-hua, ZHU Yan, ZONG Rui, CHEN Rui. Effect of Biochar Application before Winter on Soil Aggregates and Carbon Sequestration in Drip Irrigation Cotton Field[J]. Chinese Journal of Soil Science, 2023, 54(3): 626 − 635 doi: 10.19336/j.cnki.trtb.2021122701
Citation: ZOU Rui-han, WANG Zhen-hua, ZHU Yan, ZONG Rui, CHEN Rui. Effect of Biochar Application before Winter on Soil Aggregates and Carbon Sequestration in Drip Irrigation Cotton Field[J]. Chinese Journal of Soil Science, 2023, 54(3): 626 − 635 doi: 10.19336/j.cnki.trtb.2021122701

非灌溉季节生物炭施用对滴灌棉田土壤团聚体及其碳含量的影响

doi: 10.19336/j.cnki.trtb.2021122701
基金项目: 国家自然科学基金项目(51869027)资助
详细信息
    作者简介:

    邹瑞晗(1996−),男,山东潍坊人,硕士研究生,从事生物炭应用技术研究。E-mail: zouruihan@stu.shzu.edu.cn

    通讯作者:

    E-mail: wzh2002027@163.com

  • 中图分类号: S156.2

Effect of Biochar Application before Winter on Soil Aggregates and Carbon Sequestration in Drip Irrigation Cotton Field

  • 摘要:   目的  为探究非灌溉季节生物炭施用对滴灌棉田耕层土壤团聚体及碳含量的调控效应,确定滴灌棉田在非灌溉季节的最佳施炭量。  方法  以不施用生物炭(B0)为对照,探究非灌溉季节施用15(B1)、30(B2)、45(B3)和60 t hm−2(B4)生物炭对新疆滴灌棉田耕层(0 ~ 40 cm)土壤总碳、有机碳、微生物量碳、土壤呼吸速率、土壤团聚体及其结合态总碳和结合态有机碳的影响。  结果  施用生物炭处理与对照处理相比土壤总碳、团聚体结合态总碳和土壤呼吸速率随生物炭用量的增加而增加,增幅分别为6.85% ~ 18.14%、6.15% ~ 17.71%和13.52% ~ 53.88%。> 0.25 mm水稳性团聚体含量、团聚体结合态有机碳、土壤有机碳和微生物量碳随生物炭用量的增加先增加后减少,增幅分别为11.80% ~ 21.68%、12.64% ~ 57.54、17.58% ~ 55.27%和13.02% ~ 46.96%。通过建立最小数据集计算土壤质量指数得出,土壤质量指数最高(0.4632)的为施用45 t hm−2(B3)生物炭处理。  结论  生物炭在非灌溉季节施用有利于增加土壤大团聚体及其碳含量,但也会增加碳的排放。新疆滴灌棉田非灌溉季节生物炭最佳施用量为45 t hm−2
  • 图  1  2020 ~ 2021年非灌溉季节逐日气温和降水量

    Figure  1.  Daily air temperature and precipitation in the non-irrigation season during 2020 ~ 2021

    图  2  不同生物炭处理下0 ~ 40 cm土层土壤水稳性团聚体粒径分布情况

    图中误差线代表标准误差(n = 3),同组图形不同小写字母表示差异具有显著性(P < 0.05),下同。

    Figure  2.  Changes in the proportions of soil water-stable aggregates at 0 ~ 40 cm soil depth in different amounts of biochar application

    图  3  不同生物炭处理下0 ~ 40 cm土层各粒径团聚体结合态总碳和有机碳含量

    Figure  3.  Aggregate-bound total carbon and organic carbon content in 0 ~ 40 cm soil layer under different biochar treatments

    图  4  生物炭不同处理下0 ~ 40 cm土层土壤总碳、有机碳、微生物量碳含量

    Figure  4.  Total carbon, organic carbon and microbial biomass carbon in 0 ~ 40 cm soil layer under different biochar treatments

    图  5  不同生物炭处理下土壤呼吸速率值随时间的变化情况

    Figure  5.  Changes in soil respiration rate with time under different biochar treatments

    表  1  试验区0 ~ 40 cm土壤基本理化性质

    Table  1.   Basic physical and chemical properties of 0 ~ 40 cm soil in test area

    容重
    Bulk density
    (g cm–3)
    pH总碳
    Total carbon
    (g kg–1)
    有机碳
    Organic carbon
    (g kg–1)
    田间持水率
    Soil field capacity
    (g g–1)
    不同粒径水稳性团聚体比例 (%)
    Proportion of water - stable aggregates
    > 2 mm0.25 ~ 2 mm0.053 ~ 0.25 mm< 0.053 mm
    1.60 7.58 17.4 7.9 18.66 8.10 55.19 23.03 13.67
    下载: 导出CSV

    表  2  生物炭理化性质

    Table  2.   Physical and chemical properties of biochar

    容重
    Bulk density
    (g cm–3)
    比表面积
    Specific surface area
    (m2 g–1)
    灰分
    Ash content
    (%)
    CEC
    (cmol( + ) kg–1)
    有机碳
    Organic carbon
    (g kg–1)
    pH全磷
    Total phosphorus
    (g kg–1)
    0.4 82.7 16.50 16.40 716 9.37 13.86
    下载: 导出CSV

    表  3  0 ~ 40 cm土层团聚体稳定性相关指标

    Table  3.   Correlation indexes of aggregate stability at 0 ~ 40 cm soil depth

    处理
    Treatment
    平均重量直径
    Mean weight diameter
    (mm)
    几何平均直径
    Geometric mean diameter
    (mm)
    > 0.25 mm水稳性团聚体含量
    > 0.25 mm water-stable aggregate
    content
    (%)
    团聚体破坏百分比
    Percentage of aggregate
    destruction
    (%)
    分形维数
    Fractal dimension
    B0 1.02 ± 0.13 d 0.43 ± 0.05 d 60.73 ± 2.39 d 34.26 ± 1.76 a 2.85 ± 0.03 a
    B1 1.43 ± 0.07 c 0.70 ± 0.04 c 72.53 ± 1.29 c 19.58 ± 1.29 b 2.66 ± 0.06 b
    B2 1.75 ± 0.06 a 0.97 ± 0.04 a 80.43 ± 1.22 ab 11.98 ± 2.65 c 2.50 ± 0.06 c
    B3 1.73 ± 0.08 a 0.98 ± 0.09 a 82.41 ± 2.96 a 7.44 ± 1.98 c 2.51 ± 0.03 c
    B4 1.53 ± 0.07 b 0.81 ± 0.06 b 77.84 ± 2.17 b 11.79 ± 0.46 c 2.63 ± 0.03 b
      注: ± 表示标准差,同列不同小写字母表示差异具有显著性(P < 0.05)。
    下载: 导出CSV

    表  4  不同处理下各个取样时间的土壤呼吸速率值显著性分析

    Table  4.   Significance analysis of soil respiration rate values for each sampling time under different treatments

    处理
    Treatment
    2020/11/82020/11/232020/12/82020/12/232021/1/82021/3/32021/3/152021/3/28
    B0 c c d c d c c e
    B1 c c c b c c c d
    B2 ab bc bc ab bc b b c
    B3 b ab b ab ab b a b
    B4 a a a a a a a a
      注:同列不同小写字母表示差异具有显著性(P < 0.05)
    下载: 导出CSV

    表  5  参评指标相关系数矩阵

    Table  5.   Correlation coefficient matrix for reference indicators

    指标
    Index
    X1X2X3X4X5X6X7X8X9X10X11
    X1 1 0.604* 0.691** −0.638* 0.443 0.742** −0.729** 0.681** 0.673** 0.937** 0.719**
    X2 1 0.744** −0.772** 0.834** 0.590* −0.610* 0.708** 0.722** 0.600* 0.872**
    X3 1 −0.982** 0.828** 0.896** −0.908** 0.949** 0.948** 0.668** 0.674**
    X4 1 −0.872** −0.869** 0.843** −0.911** −0.938** −0.589* −0.704**
    X5 1 0.735** −0.647** 0.748** 0.776** 0.400 0.715**
    X6 1 −0.877** 0.861** 0.857** 0.676** 0.587*
    X7 1 −0.973** −0.930** −0.721** −0.553*
    X8 1 0.974** 0.695** 0.583*
    X9 1 0.674** 0.631*
    X10 1 0.601*
    X11 1
      注:*表示P < 0.05,**表示P < 0.01
    下载: 导出CSV

    表  6  主成分特征值及方差贡献率

    Table  6.   Principal component eigenvalue and variance contribution rate

    主成分
    Principal
    component
    特征值
    Eigenvalue
    方差贡献率(%)
    Contribution
    rate
    累积方差贡献率(%)
    Total of
    contribution rate
    1 8.525 77.496 77.496
    2 0.995 9.043 86.539
    3 0.886 8.051 94.59
    4 0.246 2.237 96.827
    5 0.146 1.324 98.151
    6 0.097 0.879 99.031
    7 0.044 0.397 99.428
    8 0.039 0.351 99.779
    9 0.022 0.197 99.976
    10 0.002 0.017 99.993
    11 0.001 0.007 100
    下载: 导出CSV

    表  7  主成分荷载矩阵及Norm值计算结果

    Table  7.   Calculation results of principal component load matrix and Norm value

    指标
    Index
    主成分载荷矩阵
    Principal component load matrix
    分组
    Grouping
    Norm值
    Norm value
    123
    X1 0.804 0.538 0.193 2 2.4149
    X2 0.827 −0.222 0.447 1 2.4610
    X3 0.967 −0.110 −0.155 1 2.8293
    X4 −0.949 0.224 0.094 1 2.7813
    X5 0.830 −0.485 0.120 1 2.4738
    X6 0.904 0.055 −0.228 1 2.6487
    X7 −0.917 −0.119 0.308 1 2.6957
    X8 0.947 −0.023 −0.259 1 2.7758
    X9 0.951 −0.072 −0.208 1 2.7845
    X10 0.775 0.577 0.130 2 2.3381
    X11 0.780 −0.054 0.572 3 2.3408
    下载: 导出CSV

    表  8  不同处理土壤质量指数

    Table  8.   Soil quality index of different treatments

    指标
    Index
    B0B1B2B3B4
    土壤质量指数0.0505 ± 0.0372 c0.2387 ± 0.0244 b0.4328 ± 0.0449 a0.4632 ± 0.0208 a0.3911 ± 0.0641 a
    下载: 导出CSV
  • [1] 张国娟. 干旱区农田添加有机质对土壤特性及棉花氮素利用根际过程的影响[D]. 新疆: 石河子大学, 2020
    [2] 柴彦君. 灌漠土团聚体稳定性及其固碳机制研究[D]. 北京: 中国农业科学院, 2014.
    [3] 胡 坤, 张红雪, 郭力铭, 等. 烟秆炭基肥对薏苡土壤有机碳组分及微生物群落结构和丰度的影响[J]. 中国生态农业学报, 2021, 29(9): 1592 − 1603.
    [4] Palansooriya K N, Wong J T F, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review[J]. Biochar, 2019, 1(1): 3 − 22. doi: 10.1007/s42773-019-00009-2
    [5] Maria V. R, Stefanie K, Harald R, et al. Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil[J]. Carbon, 2017, 115: 209 − 219. doi: 10.1016/j.carbon.2016.12.096
    [6] Yang J, Zhou W, Liu J, et al. Dynamics of greenhouse gas formation in relation to freeze/thaw soil depth in a flooded peat marsh of Northeast China[J]. Soil Biology & Biochemistry, 2014, 75: 202 − 210.
    [7] Liu Z L, Dugan B, Masiello C A, et al. Effect of freeze-thaw cycling on grain size of biochar[J]. Plos One, 2018, 13(1): e0191246. doi: 10.1371/journal.pone.0191246
    [8] 刘文慧, 王昱璇, 陈丹丹, 等. 老化作用对生物炭理化特性的影响[J]. 工程热物理学报, 2021, 42(6): 1575 − 1582.
    [9] Mia S, Dijkstra F A, Singh B. Aging Induced Changes in Biochar's Functionality and Adsorption Behavior for Phosphate and Ammonium[J]. Environmental Science & Technology, 2017, 51(15): 8359 − 8367.
    [10] Zhou H, Fang H, Zhang Q, et al. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam[J]. European Journal of Soil Science, 2019, 70(2): 291 − 300. doi: 10.1111/ejss.12732
    [11] 张 坤. 生物炭异质性及其纳米结构的环境风险[D]. 浙江: 浙江大学, 2019.
    [12] Hua L, Lu Z, Ma H, et al. Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil[J]. Environmental Progress & Sustainable Energy, 2014, 2014,33(3): 941 − 946.
    [13] 孙福军, 苗涵博, 韩春兰, 等. 激光粒度仪法与湿筛-沉降法测定火山碎屑物发育土壤颗粒组成的比较[J]. 土壤通报, 2020, 51(3): 574 − 579.
    [14] 王 尧, 田 衎, 封跃鹏, 等. 土壤中总有机碳环境标准样品研制[J]. 岩矿测试, 2021, 40(4): 593 − 602.
    [15] 罗佳琳, 赵亚慧, 于建光, 等. 麦秸与氮肥配施对水稻根际区土壤微生物量碳氮的影响[J]. 中国生态农业学报, 2021, 29(9): 1582 − 1591.
    [16] 刘平奇, 张梦璇, 王立刚, 等. 深松秸秆还田措施对东北黑土土壤呼吸及有机碳平衡的影响[J]. 农业环境科学学报, 2020, 39(5): 1150 − 1160. doi: 10.11654/jaes.2019-1387
    [17] 朱家琪, 满秀玲, 王 飞. 我国寒温带四种森林植被类型下土壤团聚体粒级组成及其稳定性比较研究[J]. 土壤通报, 2020, 51(3): 606 − 613. doi: 10.19336/j.cnki.trtb.2020.03.14
    [18] 贡 璐, 张雪妮, 冉启洋. 基于最小数据集的塔里木河上游绿洲土壤质量评价[J]. 土壤学报, 2015, 52(3): 682 − 689. doi: 10.11766/trxb201406290331
    [19] Zhang X, Qu J S, Li H, et al. Biochar addition combined with daily fertigation improves overall soil quality and enhances water-fertilizer productivity of cucumber in alkaline soils of a semi-arid region[J]. Geoderma, 2020, 363(C): 114 − 170.
    [20] D’Hose T, Cougnon M, Vliegher A D, et al. The positive relationship between soil quality and crop production: A case study on the effect of farm compost application[J]. Applied Soil Ecology, 2014, 75: 189 − 198. doi: 10.1016/j.apsoil.2013.11.013
    [21] Fu Q, Zhao H, Li H, et al. Effects of biochar application during different periods on soil structures and water retention in seasonally frozen soil areas[J]. Science of the Total Environment, 2019, 694(Dec.1): 133732.1 − 133732.14.
    [22] 彭红波, 杨 东, 高 鹏, 等. 生物炭中溶解性炭黑的释放及环境效应[J]. 材料导报, 2020, 34(11): 11029 − 11034. doi: 10.11896/cldb.19050149
    [23] 周丹丹, 吴文卫, 吴 敏. 生物炭的稳定性及其评价方法[J]. 重庆大学学报, 2015, 38(3): 116 − 122. doi: 10.11835/j.issn.1000-582X.2015.03.016
    [24] 孙 薇, 钱 勋, 付青霞, 等. 生物有机肥对秦巴山区核桃园土壤微生物群落和酶活性的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1224 − 1233. doi: 10.11674/zwyf.2013.0523
    [25] 罗 梅, 田 冬, 高 明, 等. 紫色土壤有机碳活性组分对生物炭施用量的响应[J]. 环境科学, 2018, 39(9): 4327 − 4337.
    [26] Xie Z, Xu Y, Liu G, et al. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China[J]. Plant & Soil, 2013, 370(1/2): 137 − 146.
    [27] 陈 颖, 刘玉学, 陈重军, 等. 生物炭对土壤有机碳矿化的激发效应及其机理研究进展[J]. 应用生态学报, 2018, 29(1): 314 − 320.
    [28] Leng L, Huang H, Li H, et al. Biochar stability assessment methods: A review[J]. Science of the Total Environment, 2018, 647(PT.1-1664): 210 − 222.
    [29] Farrell M, Kuhn T K, Macdonald L M, et al. Microbial utilisation of biochar-derived carbon[J]. Science of the Total Environment, 2013, 465(6): 288 − 297.
    [30] Bruun S, Clauson-Kaas S, Bovulska L, et al. Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates[J]. European Journal of Soil Science, 2014, 65(1): 52 − 59. doi: 10.1111/ejss.12073
    [31] Huang R L, Zhang Z Y, Xiao X, et al. Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils[J]. Science of the Total Environment, 2019, 692: 333 − 343. doi: 10.1016/j.scitotenv.2019.07.262
    [32] Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis[J]. Bioresource Technology, 2013, 146: 485 − 493. doi: 10.1016/j.biortech.2013.07.086
    [33] Gao Y, Li T, Fu Q, et al. Biochar application for the improvement of water-soil environments and carbon emissions under freeze-thaw conditions: An in-situ field trial[J]. Science of the Total Environment, 2020, 723(3): 138 − 147.
    [34] Lyu H, He Y, Tang J, et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J]. Environmental Pollution, 2016, 218: 1 − 7. doi: 10.1016/j.envpol.2016.08.014
    [35] Weng Z, Zwieten L V, Singh B P, et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits[J]. Nature Climate Change, 2017, 7(5): 371 − 376. doi: 10.1038/nclimate3276
    [36] Deng W, Van Z L, Lin Z, et al. Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol[J]. Journal of Soils and Sediments, 2017, 17(3): 632 − 640. doi: 10.1007/s11368-015-1347-4
    [37] Shen Y F, Zhu L X, Cheng H Y, et al. Effects of Biochar Application on CO2 Emissions from a Cultivated Soil under Semiarid Climate Conditions in Northwest China[J]. Sustainability, 2017, 9(8): 1482. doi: 10.3390/su9081482
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 录用日期:  2022-06-21
  • 修回日期:  2022-03-26
  • 刊出日期:  2023-06-06

目录

    /

    返回文章
    返回