留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长期施肥对旱地红壤微团聚体磷素有效性的影响

周亦靖 牛犇 李欢 王艳玲

周亦靖, 牛 犇, 李 欢, 王艳玲. 长期施肥对旱地红壤微团聚体磷素有效性的影响[J]. 土壤通报, 2023, 54(1): 89 − 99 doi: 10.19336/j.cnki.trtb.2021121602
引用本文: 周亦靖, 牛 犇, 李 欢, 王艳玲. 长期施肥对旱地红壤微团聚体磷素有效性的影响[J]. 土壤通报, 2023, 54(1): 89 − 99 doi: 10.19336/j.cnki.trtb.2021121602
ZHOU Yi-jing, NIU Ben, LI Huan, WANG Yan-ling. Effects of Long-term Fertilization on Availability of Micro-aggregate Associated Phosphorus in Upland Red Soil[J]. Chinese Journal of Soil Science, 2023, 54(1): 89 − 99 doi: 10.19336/j.cnki.trtb.2021121602
Citation: ZHOU Yi-jing, NIU Ben, LI Huan, WANG Yan-ling. Effects of Long-term Fertilization on Availability of Micro-aggregate Associated Phosphorus in Upland Red Soil[J]. Chinese Journal of Soil Science, 2023, 54(1): 89 − 99 doi: 10.19336/j.cnki.trtb.2021121602

长期施肥对旱地红壤微团聚体磷素有效性的影响

doi: 10.19336/j.cnki.trtb.2021121602
基金项目: 国家自然科学基金项目(42077087)资助
详细信息
    作者简介:

    周亦靖(1997−),女,广西桂林人,硕士,主要研究领域为红壤胶体磷。E-mail: 470511935@qq.com

    通讯作者:

    E-mail: ylwang@nuist.edu.cn

  • 中图分类号: S152.4;S153.6

Effects of Long-term Fertilization on Availability of Micro-aggregate Associated Phosphorus in Upland Red Soil

  • 摘要:   目的  土壤微团聚体是磷素储存与周转的重要载体,明确长期施肥下旱地红壤微团聚体中赋存磷素的形态及其生物有效性,为磷肥的高效合理施用提供理论依据。  方法  以位于鹰潭农田生态系统国家野外科学观测研究站院内的长期肥料定位试验(1988 ~ 2014)为依托,分别以有机无机配施区的1/2 NPK(CK)、低量NPK + 稻秆(RS)与低量NPK + 猪厩肥(PM)处理及无机肥区的NK与NPK处理的旱地红壤为研究材料,采用水分散-吸管法逐级提取了土壤中0.25 ~ 0.05 mm、0.05 ~ 0.01 mm、0.01 ~ 0.005 mm与 < 0.005 mm粒级微团聚体,对比分析了各粒级微团聚体中全磷、有效磷及磷活化系数的变化差异。基于土壤磷素分级结果,分析了旱地红壤中大小粒级微团聚体中极有效磷、中等有效磷及非有效磷对长期施肥的响应。借助于结构方程模型探讨了微团聚体中各形态磷、磷活化系数、颗粒组成、有机质、铁铝氧化物等因子与有效磷的互应关系。  结果  长期配施猪粪可以显著增加旱地红壤各粒级微团聚体中全磷、有效磷、磷活化系数及极有效磷、中等有效磷及非有效磷的含量,且< 0.005 mm粒级微团聚体中的各组分磷增加比例最多,而配施稻秆只可显著降低0.01 ~ 0.005 mm粒级微团聚体中各组分磷含量。与NPK处理相比,长期不施磷肥的NK处理中各粒级微团聚体中各组分磷含量均显著降低,且0.05 ~ 0.01 mm粒级中的降低比例最大,还可以显著降低0.25 ~ 0.05 mm与0.05 ~ 0.01 mm微团聚体的磷活化系数,但增加0.01 ~ 0.005 mm与< 0.005 mm粒级的磷活化系数。结构方程模型拟合结果表明,长期施肥的旱地红壤微团聚体中无机磷组分是影响有效磷的正向因子,而有机磷组分则是负向影响因子;逐步回归分析发现NaHCO3和HCl提取态的无机磷组分则是影响旱地红壤磷活化系数的主要因子。  结论  在施用化肥的基础上配施有机肥、尤其是配施猪粪,可以显著增加并促进旱地红壤中稳定性高的有机态磷组分向稳定性低的无机态磷组分转化,进而提高旱地红壤磷素有效性。
  • 图  1  Chen等修改Hedley磷分级方法解图

    Figure  1.  Diagram of Hedley P sequential fractionation scheme as modified by Chen et al.

    图  2  长期施肥下红壤旱地微团聚体的全磷含量变化

    不同大写字母表示处理间变化差异显著(P < 0.05);不同小写字母表示微团聚体粒级间变化差异显著(P < 0.05);下同。

    Figure  2.  Changes of soil micro-aggregate associated total phosphorus (TP) in upland red soil under long-term fertilization

    图  3  长期施肥下红壤旱地微团聚体Bray-P的含量变化

    Figure  3.  Changes of soil micro-aggregate associated Bray-P in upland red soil under long-term fertilization

    图  4  长期施肥下红壤旱地微团聚体磷活化系数的变化

    Figure  4.  Changes of soil micro-aggregate associated P activation coefficient (PAC) in upland red soil under long-term fertilization

    图  5  结构方程(SEM)模型结果

    图中箭头的粗细和箭头上的数值分别代表路径系数及其大小;***表示P < 0.001,**表示P < 0.01,*表示P < 0.05。

    Figure  5.  Structural equation modeling results

    表  1  1988 ~ 2014 年各施肥小区肥料年施用量[15]

    Table  1.   Annual input amount of fertilizer application in tested plot from 1988 to 2014

    小区
    Plot
    肥料处理
    Fertilizer treatment
    N
    (kg hm−2)
    P2O5
    (kg hm−2)
    K2O
    (kg hm−2)
    风干稻秆
    Air-dried rice straw
    (kg hm−2)
    鲜猪粪
    Fresh pig manure
    (kg hm−2)
    IFP NK 120 118
    NPK 120 39.3 118
    OIFP 1/2 NPK (CK) 60.0 19.7 58.9
    低量NPK + 稻秆(RS) 32.5 31.8 50.0 3000
    低量NPK + 猪粪(PM) 32.5 31.8 50.0 15000
    下载: 导出CSV

    表  2  供试土壤的基本理化性质及微团聚体粒级分布比例

    Table  2.   Basic physicochemical properties of tested soils and the distribution proportion of soil micro-aggregates

    小区
    Plot
    处理
    Treatment
    pHKCl有机质
    Soil
    organic
    matter
    (g kg−1)
    全磷
    Total P
    (g kg−1)
    游离态
    氧化铁
    Free
    iron
    oxides
    (g kg−1)
    游离态
    氧化铝
    Free
    aluminum
    oxides
    (g kg−1)
    非晶质态
    氧化铁
    Amorphous
    iron
    oxides
    (g kg−1)
    非晶质态
    氧化铝
    Amorphous
    aluminum
    oxides
    (g kg−1)
    有效磷
    Bray-P
    (mg kg−1)
    黏粒
    Clay
    (%)
    粉粒
    Silt
    (%)
    砂粒
    Sand
    (%)
    微团聚体粒径比例
    Proportion of soil
    micro-aggregates
    0.25 ~
    0.05 mm
    (%)
    0.05 ~
    0.01 mm
    (%)
    0.01 ~
    0.005 mm
    (%)
    < 0.005 mm
    (%)
    IFP NK 3.20 b 9.65 b 0.27 b 39.0 a 14.8 a 1.80 a 3.80 a 6.40 b 26.0 a 56.1 a 17.9 b 48.2 Aa 22.5 Ba 0.80 Cb 0.3 Cb
    NPK 3.80 a 11.5 a 0.64 a 40.5 a 14.9 a 2.10 a 3.20 a 67.0 a 23.2 b 51.4 b 25.4 a 46.6 Aa 16.2 Bb 2.90 Ca 3.4 Ca
    OIFP 1/2 NPK (CK) 3.80 b 11.3 b 0.49 b 36.0 a 12.7 a 1.90 a 3.90 a 39.3 b 23.7 a 49.4 a 26.8 a 49.4 Aa 16.3 Bb 3.00 Cb 2.9 Cb
    低量NPK + 稻秆(RS) 3.80 b 11.3 b 0.47 b 35.7 a 13.4 a 1.80 a 3.50 a 39.4 b 20.7 a 52.1 a 27.2 a 48.2 Aa 16.1 Bab 3.50 Cb 3.5 Cb
    低量NPK + 猪粪(PM) 4.00 a 12.1 a 1.29 a 33.9 a 11.1 a 2.20 a 4.10 a 48.3 a 20.1 a 50.2 a 29.7 a 44.3 Ab 18.2 Ba 3.60 Ca 4.6 Ca
    注:不同小写字母表示处理间差异显著(P < 0.05);不同大写字母表示相同处理不同微团聚体粒级间差异显著(P < 0.05);黏粒、粉粒和砂粒为体积百分数。
    下载: 导出CSV

    表  3  长期施肥下红壤旱地微团聚体中极有效磷、中等有效磷及非有效磷的变化

    Table  3.   Changes of the extremely available P (EAP), medium available P (MAP) and non-available P (NAP) in various soil micro - aggregates of upland red soils under the long-term fertilization

    小区
    Plot
    处理
    Treatment
    粒径
    Particle size
    (mm)
    极有效磷
    EAP
    (mg kg−1)
    极有效磷/全磷
    EAP/TP
    (%)
    中等有效磷
    MAP
    (mg kg−1)
    中等有效磷/全磷
    MAP/TP
    (%)
    非有效磷
    NAP
    (mg kg−1)
    非有效磷/全磷
    NAP/TP
    (%)
    无机肥区(IFP) NK 0.25 ~ 0.05 15.3 Bab 3.40 Bc 280.8 Ba 62.4 Aa 154.1 Bab 34.2 Ac
    0.05 ~ 0.01 15.6 Ba 5.06 Ba 130.6 Bc 42.2 Bc 163.2 Ba 52.7 Aa
    0.01 ~ 0.005 15.1 Bab 4.41 Bb 181.0 Bb 52.8 Bb 146.8 Bb 42.8 Ab
    < 0.005 14.6 Bb 5.02 Ba 186.6 Bb 64.1 Aa 90.0 Bc 30.9 Ad
    NPK 0.25 ~ 0.05 68.5 Aa 11.6 Aa 359.7 Ac 60.9 Bb 162.1 Ac 27.5 Bc
    0.05 ~ 0.01 65.4 Ab 10.2 Ab 365.5 Abc 57.3 Ac 207.0 Aab 32.4 Bab
    0.01 ~ 0.005 38.1 Ac 5.91 Ac 385.8 Ab 59.9 Ab 220.0 Aa 34.2 Ba
    < 0.005 40.7 Ac 6.24 Ac 410.9 Aa 63.0 Ba 201.0 Ab 30.8 Ab
    有机无机肥
    配施区(OIFP)
    1/2NPK (CK) 0.25 ~ 0.05 49.9 Ca 9.47 Ca 306.5 Bc 58.2 Ab 170.6 Bb 32.3 Ab
    0.05 ~ 0.01 45.0 Bb 8.16 Cb 305.7 Bc 55.3 Cc 201.8 Ba 36.5 Aa
    0.01 ~ 0.005 31.6 Cc 5.28 Cc 399.2 Ba 66.6 Aa 168.9 Bb 28.2 Bc
    < 0.005 24.1 Bd 4.26 Bd 380.4 Bb 67.2 Aa 161.8 Bb 28.6 Ac
    低量NPK + 稻秆(RS) 0.25 ~ 0.05 60.6 Ba 11.6 Ba 274.3 Cc 52.5 Bc 187.3 Ba 35.9 Aa
    0.05 ~ 0.01 44.2 Bb 8.85 Bb 285.9 Bc 57.1 Bb 170.1 Cb 34.0 Bab
    0.01 ~ 0.005 45.9 Bb 8.14 Bc 331.9 Ba 58.9 Bb 186.1 Ba 33.0 Ab
    < 0.005 22.8 Bc 3.80 Cd 409.1 Bb 68.2 Aa 167.5 Bb 28.0 Ac
    低量NPK + 猪粪(PM) 0.25 ~ 0.05 270.6 Aa 19.8 Aa 809.4 Ab 59.3 Ac 285.4 Ac 20.9 Bc
    0.05 ~ 0.01 215.7 Ab 16.4 Ab 806.4 Ab 61.4 Aab 291.3 Ac 22.2 Cc
    0.01 ~ 0.005 179.5 Ac 14.1 Ac 761.7 Ac 60.0 Bbc 328.6 Ab 25.9 Cb
    < 0.005 120.6 Ad 8.21 Ad 929.0 Aa 63.2 Ba 419.9 Aa 28.6 Aa
      注:不同大写字母表示相同粒级微团聚体不同肥料处理间差异显著(P < 0.05);不同小写字母表示相同处理中不同粒级微团聚体间差异显著(P < 0.05)。
    下载: 导出CSV

    表  4  逐步回归分析结果

    Table  4.   Results of stepwise regression analysis

    影响因子
    Influence factor
    标准化系数
    Standardized Coefficients
    显著性
    Significance
    Pi-NaHCO3 1.386 0.000*
    Pi-HCl −0.533 0.011*
    MWD −0.159 0.025*
      注:*表示影响显著(P < 0.05)。
    下载: 导出CSV
  • [1] Xu X, Wang Y, Zhang H, et al. Soil phosphorus storage capacity as affected by repeated phosphorus addition in an Ultisol[J]. Communications in Soil Science and Plant Analysis, 2020, 51(14): 1960 − 1968. doi: 10.1080/00103624.2020.1813751
    [2] Balemi T, Negisho K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review[J]. Journal of Soil Science and Plant Nutrition, 2012, 12: 547 − 561.
    [3] 王 蕾, 王艳玲, 李 欢, 等. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析[J]. 中国土壤与肥料, 2021, (1): 17 − 25.
    [4] 李冬初, 王伯仁, 黄 晶, 等. 长期不同施肥红壤磷素变化及其对产量的影响[J]. 中国农业科学, 2019, 52(21): 3828 − 3841.
    [5] 吕真真, 刘秀梅, 仲金凤, 等. 长期施肥对红壤性水稻土有机碳矿化的影响[J]. 中国农业科学, 2019, 52(15): 2636 − 2645.
    [6] Totsche K U, Amelung W, Gerzabek M H, et al. Microaggregates in soils[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(1): 104 − 136. doi: 10.1002/jpln.201600451
    [7] 廖超林, 黎丽娜, 谢丽华, 等. 增减施有机肥对红壤性水稻土团聚体稳定性及胶结物的影响[J]. 土壤学报, 2021, 2021,58(4): 978 − 988.
    [8] 刘 瑾, 杨建军. 近三十年农田土壤磷分子形态的研究进展[J]. 土壤学报, 2021, 58(3): 558 − 567.
    [9] 王艳玲, 蒋发辉, 徐江兵, 等. 长期配施有机肥对旱地红壤微团聚体中有机碳含量的影响[J]. 土壤通报, 2018, 49(2): 373 − 384.
    [10] Ahmed E H, Anjum S I, Zhang M. Effects of fertilization on phosphorus distribution in water-stable aggregates of soils with different properties[J]. Toxicological and Environmental Chemistry, 2016, 99(1): 32 − 47.
    [11] Mitran T, Mani P K, Bandyopadhyay P K, et al. Effects of Organic Amendments on Soil Physical Attributes and Aggregate-Associated Phosphorus Under Long-Term Rice-Wheat Cropping[J]. Pedosphere, 2018, 28(5): 129 − 138.
    [12] 舒正悦, 王景燕, 龚 伟, 等. 复合养殖对柑橘林土壤微团聚体分形特征及理化性质的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(5): 92 − 98.
    [13] 江春玉, 刘 萍, 刘 明, 等. 不同肥力红壤水稻土根际团聚体组成和碳氮分布动态[J]. 土壤学报, 2017, 54(1): 138 − 149.
    [14] 中国农业科学院. 红黄壤地区综合治理与农业持续发展研究[M]. 北京: 中国农业出版社, 2001.
    [15] Wang Y, Tang J, Zhang H, et al. Phosphorus availability and sorption as affected by long-term fertilization[J]. Agronomy Journal, 2014, 106(5): 1583 − 1592. doi: 10.2134/agronj14.0059
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [17] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978.
    [18] Hedley M J, Kirk G, Santos M B. Phosphorus efficiency and the forms of soil phosphorus utilized by upland rice cultivars[J]. Plant and Soil, 1994, 158(1): 53 − 62. doi: 10.1007/BF00007917
    [19] Chen C R, Condron L M, Davis M. R., et al. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil[J]. Plant and Soil, 2000, 220(1-2): 151 − 163.
    [20] Tiessen H, Stewart J W B, Cole C V. Pathways of phosphorus transformations in soils of differing pedogenesis1[J]. Soil Science Society of America Journal, 1984, 48(4): 853 − 858. doi: 10.2136/sssaj1984.03615995004800040031x
    [21] 卞玉梅. 结构方程模型研究及其应用[D]. 大连海事大学, 2017.
    [22] 黄毅茗. 基于因子分析建立综合评价模型的一种改进[J]. 长春师范大学学报, 2016, 35(2): 14 − 18.
    [23] Martín-Hernández E, Martín M, Ruiz-Mercado G J. A geospatial environmental and techno-economic framework for sustainable phosphorus management at livestock facilities[J]. Resources, Conservation and Recycling, 2021, 175: 105843. doi: 10.1016/j.resconrec.2021.105843
    [24] Mao X, Xu X, Lu K, et al. Effect of 17 years of organic and inorganic fertilizer applications on soil phosphorus dynamics in a rice–wheat rotation cropping system in eastern China[J]. Journal of Soils and Sediments, 2015, 15(9): 1889 − 1899. doi: 10.1007/s11368-015-1137-z
    [25] Ahmad E H, Demisie W, Zhang M. Effects of land use on concentrations and chemical forms of phosphorus in different-size aggregates[J]. Eurasian soil science, 2017, 50(12): 1435 − 1443.
    [26] Sharpley A N, Herron S, Daniel T. Overcoming the challenges of phosphorus-based management in poultry farming[J]. Journal of Soil and Water Conservation, 2007, 62(6): 375 − 389.
    [27] Wu Q, Zhang S, Zhu P, et al. Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization[J]. PLoS One, 2017, 12(5): e0176437. doi: 10.1371/journal.pone.0176437
    [28] Lou H, Yang S, Zhao C, et al. Using a nitrogen-phosphorus ratio to identify phosphorus risk factors and their spatial heterogeneity in an intensive agricultural area[J]. Catena, 2017, 149: 426 − 436. doi: 10.1016/j.catena.2016.10.022
    [29] 张博凯, 郝鲜俊, 高文俊, 等. 不同有机肥及用量对矿区复垦土壤有效磷含量及供磷特性的影响[J]. 水土保持学报, 2021, 35(2): 271 − 278.
    [30] Green V S, Cavigelli M A, Dao T H, et al. Soil physical properties and aggregate-associated C, N, and P distributions in organic and conventional cropping systems[J]. Soil Science, 2005, 170(10): 822 − 831.
    [31] Dutta D, Meena A L, Mishra R P, et al. Long-term effect of organic, inorganic and integrated nutrient management on phosphorous dynamics under different cropping systems of typic ustochrept soil of India[J]. Communications in Soil Science and Plant Analysis, 2020, 51(21): 2746 − 2763. doi: 10.1080/00103624.2020.1849258
    [32] 颜晓军, 叶德练, 郑朝元, 等. 磷肥投入对赤砂土磷形态累积及有效性的影响[J]. 南方农业学报, 2019, 50(9): 1945 − 1952.
    [33] 郭万伟, 肖和艾, 吴金水, 等. 红壤旱土和水稻土团聚体中磷素的分布特点[J]. 土壤学报, 2009, 46(1): 85 − 92.
    [34] 陈利军, 蒋瑀霁, 王浩田, 等. 长期施用有机物料对旱地红壤磷组分及磷素有效性的影响[J]. 土壤, 2020, 52(3): 451 − 457.
    [35] 戴佩彬. 模拟条件下磷肥配施有机肥对土壤磷素转化迁移及水稻吸收利用的影响[D]. 浙江大学, 2016.
    [36] Li C, Zhang P, Zhang J, et al. Forms, transformations, and availability of phosphorus after 32 years of manure and mineral fertilization in a Mollisol under continuous maize cropping[J]. Archives of Agronomy and Soil Science, 2020, 67(9): 1256 − 1271.
    [37] 文永莉. 不同施肥条件下旱地红壤铁铝氧化物转化与固碳机理研究[D]. 南京农业大学, 2017.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  45
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 录用日期:  2022-05-03
  • 修回日期:  2022-04-27
  • 网络出版日期:  2023-02-02
  • 刊出日期:  2023-02-06

目录

    /

    返回文章
    返回