留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿复垦区不同恢复年限沙棘人工林土壤真菌群落特征

秦家凤 李阳 刘广全 艾宁 刘长海

秦家凤, 李 阳, 刘广全, 艾 宁, 刘长海. 煤矿复垦区不同恢复年限沙棘人工林土壤真菌群落特征[J]. 土壤通报, 2022, 53(6): 1413 − 1420 doi: 10.19336/j.cnki.trtb.2021112305
引用本文: 秦家凤, 李 阳, 刘广全, 艾 宁, 刘长海. 煤矿复垦区不同恢复年限沙棘人工林土壤真菌群落特征[J]. 土壤通报, 2022, 53(6): 1413 − 1420 doi: 10.19336/j.cnki.trtb.2021112305
QIN Jia-feng, LI Yang, LIU Guang-quan, AI Ning, LIU Chang-hai. Soil Fungal Community Characteristics of Seabuckthorn Plantation with Different Restoration Years in Coal Mine Reclamation Area[J]. Chinese Journal of Soil Science, 2022, 53(6): 1413 − 1420 doi: 10.19336/j.cnki.trtb.2021112305
Citation: QIN Jia-feng, LI Yang, LIU Guang-quan, AI Ning, LIU Chang-hai. Soil Fungal Community Characteristics of Seabuckthorn Plantation with Different Restoration Years in Coal Mine Reclamation Area[J]. Chinese Journal of Soil Science, 2022, 53(6): 1413 − 1420 doi: 10.19336/j.cnki.trtb.2021112305

煤矿复垦区不同恢复年限沙棘人工林土壤真菌群落特征

doi: 10.19336/j.cnki.trtb.2021112305
基金项目: 国家自然科学基金项目(32060297、31370541)、中国水利水电科学研究院R&D项目(SC0145B012021)和国家重点研发计划课题(2016YFC0501705)资助
详细信息
    作者简介:

    秦家凤(1995−),女,汉族,陕西渭南人,硕士,主要从事土壤生态及生物多样性保护等方面的研究。Email: 1441883452@qq.com

    通讯作者:

    Email: yadxlch@126.com

  • 中图分类号: S154

Soil Fungal Community Characteristics of Seabuckthorn Plantation with Different Restoration Years in Coal Mine Reclamation Area

  • 摘要:   目的  探讨矿区不同恢复年限复垦地沙棘人工林土壤真菌群落组成、多样性及其影响因子。  方法  以鄂尔多斯聚鑫龙煤矿复垦区不同恢复年限沙棘人工林为研究对象,撂荒草地为对照,对研究区土样进行采集,通过高通量测序对土样真菌群落测序分析。  结果  研究区共获得真菌8门、30纲、69目、164科和285属,其中子囊菌门和担子菌门为主要菌群,占样地所有菌门的98.2%,不同恢复年限不同土层真菌群落组成存在差异。随着恢复年限的增加,研究区土壤真菌门分类水平上主要类群的个体数及类群数整体呈现增长趋势,整体高于对照样地草地。另外,恢复7年的样地土壤真菌群落丰富度及多样性显著高于其他年限和撂荒草地。冗余分析表明,研究区不同恢复年限沙棘林土壤微生物群落组成主要由土壤pH、土壤有机质含量决定,同时也与土壤氮、磷、钾元素有关。  结论  不同恢复年限沙棘人工林土壤理化性质存在差异,恢复年限的增加提高了真菌的物种丰富度及多样性。
  • 图  1  样地信息

    Figure  1.  Plot information

    图  2  不同土层各恢复年限沙棘人工林土壤真菌门水平物种组成

    A:土层0 ~ 10 cm;B:土层10 ~ 20 cm。

    Figure  2.  Species composition of soil fungi at phylum level in Seabuckthorn plantation in different soil layers and restoration years

    图  3  各样地土壤真菌属水平丰度热图

    A:土层0 ~ 10 cm;B:土层10 ~ 20 cm。

    Figure  3.  The clustering heat map of the level abundance of soil fungi in different places

    图  4  不同恢复年限沙棘人工林真菌门分类群落与土壤理化指标的冗余分析

    Figure  4.  Redundancy analysis of fungal taxonomic community and soil physical and chemical indices of Seabuckthorn plantation in different restoration years

    表  1  样地概况

    Table  1.   Overview of sample plot

    植被类型
    Varieties of
    seabuckthorn
    海拔
    Altitude
    (m)
    经纬度
    Longitude and
    latitude
    恢复年限
    Recovery years
    (a)
    株距 × 行距
    Plant spacing ×
    Row spacing
    (m)
    平均基径
    Average base
    diameter
    (cm)
    平均高度
    Average height
    (cm)
    草本植被
    Herbaceous
    vegetation
    大果沙棘
    1350 E:110°3′48″
    N:39°54′23″
    7 2 × 3 4.2 ± 0.15 168 茅草、刺儿菜、
    拂子茅
    1320 E:110°3′48″
    N:39°54′23″
    6 2 × 3 5.2 ± 0.19 190 ± 3.55 沙蓬
    1370 E:110°4′32′
    N:39°54′33′
    5 2 × 3 3.8 ± 0.29 167 ± 2.92
    沙地

    1390 E:110°3′23″
    N:39°54′21″
    4 2 × 3 4.1 ± 0.13 163 ± 2.18 沙蓬
    1390 E:110°3′19″
    N:39°54′20″
    3 2 × 3 3.0 ± 0.11 126 ± 2.3 沙蓬(大量)
    草地 1390 E:110°4′32″
    N:39°54′10″
    / / / / 大油芒、苦麦菜、狗
    尾草、羊草、苜蓿、
    独行菜、黄花蒿
    下载: 导出CSV

    表  2  不同恢复年限沙棘人工林土壤真菌多样性指数

    Table  2.   Soil fungal diversity index of Seabuckthorn plantation in different restoration years

    多样性指数
    Diversity
    index
    修复年限
    Recovery
    year
    土层
    Soil layer (cm)
    0 ~ 1010 ~ 20
    Chao1 3 a 139.29 98.40
    4 a 143.16 141.61
    5 a 41.41 187.49
    6 a 179.52 193.37
    7 a 281.25 200.57
    草地 121.17 190.73
    Shannon 3 a 3.00 3.53
    4 a 2.92 2.95
    5 a 1.25 3.06
    6 a 3.36 2.98
    7 a 3.74 3.76
    草地 1.39 3.37
    Simpson 3 a 0.56 0.58
    4 a 0.56 0.55
    5 a 0.34 0.55
    6 a 0.57 0.54
    7 a 0.58 0.58
    草地 0.30 0.50
    下载: 导出CSV

    表  3  土壤理化性质

    Table  3.   Soil physical and chemical properties

    土层深度
    Soil layer
    (cm)
    恢复年限
    Recovery year
    土壤pH
    pH
    有机质
    SOM
    (g kg−1)
    碱解氮
    ALN
    (g kg−1)
    全磷
    TP
    (g kg−1)
    速效钾
    AK
    (g kg−1)
    含水量
    SMC
    (g kg−1)
    0 ~ 10 3 a 8.29 ± 0.08 a 1.72 ± 0.58 c 8.57 ± 0.47 b 0.39 ± 0.11 b 85.67 ± 4.33 b 11.28 ± 0.43a
    4 a 7.66 ± 0.14 a 8.51 ± 0.58 a 9.73 ± 1.63 b 0.47 ± 0.03 b 47.67 ± 1.76 c 5.10 ± 0.98 b
    5 a 7.47 ± 0.06 a 7.58 ± 1.22a b 10.20 ± 1.21a b 0.54 ± 0.03 b 100.33 ± 3.48 a 5.19 ± 0.29 b
    6 a 7.59 ± 0.16 a 5.32 ± 1.09 b 13.00 ± 2.10 a 0.95 ± 0.08 a 79.67 ± 2.91 b 7.9 ± 0.14a b
    7 a 7.96 ± 0.02 a 10.57 ± 1.11 a 9.73 ± 1.17 b 0.33 ± 0.10 b 101.33 ± 4.49 a 5.19 ± 0.29 b
    草地 7.50 ± 0.64 a 10.2 ± 0.75 a 4.90 ± 0.17 c 0.32 ± 0.98 b 55.70 ± 0.64 c 2.50 ± 0.51 b
    10 ~ 20 3 a 8.53 ± 0.07 a 1.72 ± 0.58 c 7.63 ± 0.23 a 0.39 ± 0.74 c 95.33 ± 3.76 a 10.28 ± 0.12 a
    4 a 7.81 ± 0.05 b 1.73 ± 0.96 c 8.57 ± 1.23 a 0.45 ± 0.03 bc 39.33 ± 3.76 d 7.81 ± 0.79 ab
    5 a 7.61 ± 0.08 bc 6.25 ± 1.18 b 8.80 ± 0.70 a 0.59 ± 0.02 a 53.33 ± 1.45 c 6.32 ± 0.14 b
    6 a 7.67 ± 0.09 bc 6.52 ± 0.81 b 9.73 ± 1.30 a 0.59 ± 0.01 a 68.67 ± 4.33 b 9.02 ± 0.26 a
    7 a 7.83 ± 0.07 b 9.70 ± 0.81 a 8.57± 0.23 a 0.35 ± 0.01 c 90.00 ± 6.43 a 10.82 ± 0.24 a
    草地 7.33 ± 0.22 c 6.41 ± 0.17 b 3.08 ± 0.64 b 0.55 ± 0.02 ab 41.00 ± 0.99 d 4.90 ± 0.58 c
    下载: 导出CSV
  • [1] 程建龙, 陆兆华, 范英宏. 露天煤矿区生态风险评价方法[J]. 生态学报, 2004, (12): 2945 − 2950. doi: 10.3321/j.issn:1000-0933.2004.12.042
    [2] Li X R, Zhang Z S, Huang L, et al. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China[J]. Chinese Science Bulletin, 2013, 58(13): 1483 − 1496. doi: 10.1007/s11434-012-5662-5
    [3] 马赟花, 冯 图, 李仰征, 等. 沙棘(Hippophae rhamnoides)对经客土改良石漠化土壤的适应性[J]. 中国沙漠, 2021, 41(1): 228 − 233.
    [4] 李 华, 周立奎. 浅谈沙棘在水土流失治理中的积极作用[J]. 水利天地, 2005, (7): 27.
    [5] 卢立娜, 赵雨兴, 胡莉芳, 等. 沙棘(Hippophae rhamnoides)种植对鄂尔多斯砒砂岩地区土壤容重、孔隙度与贮水能力的影响[J]. 中国沙漠, 2015, 35(5): 1171 − 1176.
    [6] 孙燕琳. 沙棘几丁质酶基因的克隆和序列分析[D]. 北京: 中国科学院研究生院, 2007.
    [7] 王晓琳, 王丽梅, 张晓媛, 等. 不同植被对晋陕蒙矿区排土场土壤养分16 a恢复程度的影响[J]. 农业工程学报, 2016, 32(9): 198 − 203.
    [8] 方 瑛, 马任甜, 安韶山, 等. 黑岱沟露天煤矿排土场不同植被复垦土壤酶活性及理化性质研究[J]. 环境科学, 2016, 37(3): 1121 − 1127.
    [9] 杨勤学, 赵冰清, 郭东罡. 中国北方露天煤矿区植被恢复研究进展[J]. 生态学杂志, 2015, 34(4): 1152 − 1157.
    [10] 刘文祥, 李 勇, 于寒青. 草灌植被恢复提高坡地土壤水稳性团聚体和碳、氮含量的有效性: 退耕年限的影响[J]. 植物营养与肥料学报, 2016, 22(1): 164 − 170.
    [11] 姜雪薇, 马大龙, 臧淑英, 等. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 2021, 48(4): 1093 − 1105.
    [12] 王楠楠, 杨 雪, 李世兰. 降水变化驱动下红松阔叶林土壤真菌多样性的分布格局[J]. 应用生态学报, 2013, 24(7): 1985 − 1990.
    [13] 李玉新, 赵 忠, 陈金泉, 等. 沙棘林土壤微生物多样性研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(8): 67 − 74+82.
    [14] 罗 蓉, 杨 苗, 余 旋, 等. 沙棘人工林土壤微生物群落结构及酶活性的季节变化[J]. 应用生态学报, 2018, 29(4): 1163 − 1169.
    [15] 杨 丹, 余 旋, 刘 旭, 等. 栽培模式对沙棘人工林土壤微生物群落结构和参与氮循环功能基因的影响[J]. 应用生态学报, 2015, 26(12): 3634 − 3640.
    [16] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
    [17] 中国科学院南京土壤研究所土壤物理研究室编. 土壤物理性质测定方法[M]. 北京: 科学出版社, 1978.
    [18] 马云波, 牛聪傑, 许中旗. 不同造林模式对铁尾矿地土壤性质的影响[J]. 水土保持学报, 2015, 29(3): 242 − 248.
    [19] 王友生, 吴鹏飞, 侯晓龙, 等. 稀土矿废弃地不同植被恢复模式对土壤肥力的影响[J]. 生态环境学报, 2015, 24(11): 1831 − 1836.
    [20] 李晓莹, 徐学华, 郭 江, 等. 不同造林树种对铁尾矿基质理化性质和土壤动物的影响[J]. 生态学报, 2014, 34(20): 5746 − 5757.
    [21] Prescott C E. Litter decomposition: what controls it and how can wealter it to sequester more carbon in forest soils?[J]. Biogeochemistry, 2010, 101(1 − 3): 133 − 149.
    [22] 崔莉娜, 郭弘婷, 李维扬, 等. 不同林龄杉木人工林菌根侵染特征研究[J]. 生态学报, 2019, 39(6): 1926 − 1934.
    [23] 李 毳, 景炬辉, 刘晋仙, 等. 铜尾矿库坝面土壤微生物群落动态的驱动因子[J]. 环境科学, 2018, 39(4): 1804 − 1812.
    [24] 孙华方, 李希来, 金立群, 等. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46 − 58.
    [25] 王占青, 张杰雪, 杨雪莲, 等. 高寒草甸不同斑块草地土壤微生物多样性特征研究[J]. 草地学报, 2021, 29(9): 1916 − 1926.
    [26] 邓娇娇, 朱文旭, 张 岩, 等. 辽西北风沙区不同人工林土壤真菌群落结构及功能特征[J]. 林业科学研究, 2020, 33(1): 44 − 54.
    [27] 乔沙沙, 周永娜, 柴宝峰, 等. 关帝山森林土壤真菌群落结构与遗传多样性特征[J]. 环境科学, 2017, 38(60): 2502 − 2512.
    [28] Marczylo E L, Macchiarulo S, Gant T W. Metabarcoding of Soil Fungi from Different Urban Greenspaces Around Bournemouth in the UK[J]. EcoHealth, 2021: 1 − 16.
    [29] Sun S, Li S, Avera B N, et al. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration[J]. Applied and Environmental Microbiology, 2017, 83(14): e00966 − 17.
    [30] Beimforde C, Feldberg K, Nylinder S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data[J]. Molecular phylogenetics and evolution, 2014, 78: 386 − 398. doi: 10.1016/j.ympev.2014.04.024
    [31] Liu M, Hu F, Chen X, et al. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments[J]. Applied Soil Ecology, 2009, 42(2): 166 − 175. doi: 10.1016/j.apsoil.2009.03.006
    [32] 李 敏, 陈利顶, 杨小茹, 等. 城乡复合生态系统土壤微生物群落特征及功能差异: 研究进展与展望[J]. 土壤学报, 2021, 58(6): 1368 − 1380.
    [33] 刘 茗, 曹林桦, 刘彩霞, 等. 亚热带4种典型森林植被土壤固碳细菌群落结构及数量特征[J]. 土壤学报, 2021, 58(4): 1028 − 1039. doi: 10.11766/trxb202005110021
    [34] Hannula S E, de Boer W, Van Veen J. A3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects[J]. Plos One, 2012, 7(4): 833 − 819.
    [35] Xun W B, Huang T, Zhao J, et al. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities[J]. Soil Biology and Biochemistry, 2015, 90: 10 − 18. doi: 10.1016/j.soilbio.2015.07.018
    [36] 陈文新. 土壤和环境微生物学[M]. 北京: 农业大学出版社, 1989, 10-43.
    [37] 孙 倩, 吴宏亮, 陈 阜, 等. 不同轮作模式下作物根际土壤养分及真菌群落组成特征[J]. 环境科学, 2020, 41(10): 4682 − 4689.
    [38] 肖 蒙, 何 欢, 王营哲, 等. 滇中高原主要森林土壤发生特性及系统分类[J]. 山地学报, 2019, 37(3): 359 − 370.
    [39] 张万儒, 李贻铨, 杨继镐, 等. 中国森林土壤分布规律[J]. 林业科学, 1981, (2): 163 − 172.
    [40] 曹红雨, 高广磊, 丁国栋, 等. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性[J]. 林业科学, 2019, 55(8): 118 − 127.
    [41] 隋 心, 张荣涛, 许 楠, 等. 三江平原不同退化阶段小叶章湿地土壤真菌群落结构组成变化[J]. 环境科学, 2016, 37(9): 3598 − 3605.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  73
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 录用日期:  2022-04-25
  • 修回日期:  2022-04-21
  • 刊出日期:  2022-12-06

目录

    /

    返回文章
    返回