留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施用猪粪对不同类型土壤中铜的赋存形态及小白菜吸收铜的影响

段华泰 黄兴洁 席凯璐 韩菡 韩梦瑶 杨秀美 李恋卿

段华泰, 黄兴洁, 席凯璐, 韩 菡, 韩梦瑶, 杨秀美, 李恋卿. 施用猪粪对不同类型土壤中铜的赋存形态及小白菜吸收铜的影响[J]. 土壤通报, 2022, 53(5): 1194 − 1202 doi: 10.19336/j.cnki.trtb.2021111601
引用本文: 段华泰, 黄兴洁, 席凯璐, 韩 菡, 韩梦瑶, 杨秀美, 李恋卿. 施用猪粪对不同类型土壤中铜的赋存形态及小白菜吸收铜的影响[J]. 土壤通报, 2022, 53(5): 1194 − 1202 doi: 10.19336/j.cnki.trtb.2021111601
DUAN Hua-tai, HUANG Xing-jie, XI Kai-lu, HAN Han, HAN Meng-yao, YANG Xiu-mei, LI Lian-qing. Effects of Pig Manure Application on Copper Fractions in Different Soils and Copper Accumulation in Chinese Cabbage[J]. Chinese Journal of Soil Science, 2022, 53(5): 1194 − 1202 doi: 10.19336/j.cnki.trtb.2021111601
Citation: DUAN Hua-tai, HUANG Xing-jie, XI Kai-lu, HAN Han, HAN Meng-yao, YANG Xiu-mei, LI Lian-qing. Effects of Pig Manure Application on Copper Fractions in Different Soils and Copper Accumulation in Chinese Cabbage[J]. Chinese Journal of Soil Science, 2022, 53(5): 1194 − 1202 doi: 10.19336/j.cnki.trtb.2021111601

施用猪粪对不同类型土壤中铜的赋存形态及小白菜吸收铜的影响

doi: 10.19336/j.cnki.trtb.2021111601
基金项目: 国家重点研发计划项目(2016YFD0800306)资助
详细信息
    作者简介:

    段华泰(1997−),汉族,安徽省安庆市人,硕士,主要从事土壤重金属污染方面的研究。E-mail: dht19970106@163.com

    通讯作者:

    E-mail: lqli@njau.edu.cn

  • 中图分类号: X53

Effects of Pig Manure Application on Copper Fractions in Different Soils and Copper Accumulation in Chinese Cabbage

  • 摘要:   目的  探讨猪粪中铜(Cu)的输入对土壤中Cu的赋存和生物有效性的影响。  方法  将1%和3%的腐熟猪粪(干猪粪∶秸秆 = 10∶1)添加到黄褐土、红壤、黑土、褐土中,分别老化0、1、2、3、5个月后,进行小白菜盆栽实验。  结果  与对照相比,施用猪粪使黄褐土、红壤、黑土和褐土土壤铜(Cu)全量分别显著增加了20.23% ~ 50.43%、79.87% ~ 142.6%、52.41% ~ 76.43%和41.14% ~ 92.24%。四种土壤中水溶态(F1)、碳酸盐结合态(F3)Cu占比均增加,施用3%猪粪的红壤未老化处理中F1-Cu和黄褐土未老化处理中F3-Cu增幅最大,分别达4.55%和16.47%。土壤铁锰氧化态(F5)、有机结合态(F6)Cu占比增加,残渣态(F7)占比降低。土壤有效态Cu的占比与猪粪老化时间呈显著负相关,3%猪粪老化5个月处理的黄褐土、黑土和褐土土壤有效态Cu占比分别降低12.85%、4.11%和3.68%,而红壤有效态Cu占比随老化时间变化不显著。在黄褐土中,腐殖酸结合态(F4)Cu的占比随猪粪老化时间的延长逐渐增加。施用猪粪显著增加小白菜对Cu的吸收,其中红壤的增幅最大,根系与地上部Cu含量分别显著提高244.5%和381.7%,地上部Cu含量为国家食品中污染物限量标准的1.44 ~ 2.56倍。逐步回归分析方程表明小白菜根系Cu的含量与土壤pH、粘粒及腐殖酸结合态(F4)含量呈显著负相关,与猪粪Cu输入量、土壤可溶性有机质含量呈显著正相关。  结论  猪粪的Cu输入显著提高土壤和小白菜的Cu 含量。土壤Cu的生物有效性不仅受土壤性质的影响,猪粪本身及在土壤中分解产生的腐殖酸和水溶性有机质对Cu的有效性也有较大的影响。通过比较不同的土壤类型,施用含Cu猪粪在红壤-作物系统中存在相对较高的重金属污染风险。
  • 图  1  未进行培养的施加猪粪土壤Cu的含量

    Figure  1.  Effects of pig manure on Cu content in uncultured soil

    图  2  不同土壤施用猪粪后重金属形态占比

    Figure  2.  Proportion of Cu fractionation in different soils after application of pig manure

    图  3  不同培养时间处理土壤的溶解性有机质含量与水溶态Cu含量的线性回归分析

    Figure  3.  Linear regression analysis of soil dissolved organic matter content and water-soluble heavy metals at different culture times

    图  4  猪粪对小白菜地上部和根系Cu含量的影响

    Figure  4.  The content of Cu in Chinese cabbage aboveground part and roots in different soils after application of pig manure

    图  5  土壤理化性质、重金属形态与小白菜根系Cu吸收量的逐步回归分析

    实线表示回归线,虚线表示95%的预测区间。回归标准化预测值是根据回归方程求得的y预测值转化成标准正态分布的y值。

    Figure  5.  Stepwise regression analysis of soil physicochemical properties, Cu forms and uptake in Chinese cabbage roots

    表  1  供试猪粪基本理化性质

    Table  1.   Basic physical-chemical properties and heavy metal content of experimental pig manure

    pH有机质(g kg−1)
    Organic matter
    全氮(g kg−1)
    Total nitrogen
    速效磷(g kg−1)
    P2O5
    速效钾(g kg−1)
    K2O
    Cu
    (mg kg−1)
    6.88 ± 0.0370.34 ± 2.928.29 ± 0.316.86 ± 0.194.02 ± 0.22499.3 ± 3.75
    下载: 导出CSV

    表  2  供试土壤基本理化性质

    Table  2.   Basic physical-chemical properties of experimental soils

    性质
    Property
    土壤类型
    Soil type
    黄褐土
    YCS
    红壤
    RS
    黑土
    BS
    褐土
    CS
    pH 8.00 ± 0.02 4.27 ± 0.02 8.25 ± 0.05 8.43 ± 0.10
    有机质 (g kg−1) 12.38 ± 0.89 9.31 ± 0.23 48.43 ± 1.87 23.77 ± 0.94
    全氮 (g kg−1) 0.75 ± 0.003 0.37 ± 0.004 1.39 ± 0.004 1.18 ± 0.004
    速效磷 (mg kg−1) 18.82 ± 0.61 9.80 ± 0.40 27.4 ± 3.41 16.62 ± 0.51
    速效钾 (mg kg−1) 138.5 ± 6.36 94.50 ± 10.61 135.0 ± 14.14 208.0 ± 14.14
    CEC (cmol kg−1) 11.87 ± 0.10 8.7 ± 0.35 18.7 ± 0.22 10.61 ± 0.08
    DOM (mg kg−1) 100.5 ± 6.38 40.62 ± 2.72 163.6 ± 8.43 157.3 ± 9.77
    粘粒含量 (%) 22.40 ± 0.33 28.20 ± 0.16 14.60 ± 0.16 12.60 ± 0.19
    Cu (mg kg−1) 35.79 ± 2.37 18.23 ± 0.02 22.61 ± 1.28 21.78 ± 0.17
    下载: 导出CSV

    表  3  试验设计及不同土壤处理的命名

    Table  3.   Experimental design and coders of different soil treatments

    培养时间(月)
    Incubation (month)
    01235
    猪粪添加量(%)
    Percentage of pig manure addition
    1313131313
    土壤类型 YCS YCS 0-1 YCS 0-3 YCS 1-1 YCS 1-3 YCS 2-1 YCS 2-3 YCS 3-1 YCS 3-3 YCS 5-1 YCS 5-3
    RS RS 0-1 RS 0-3 RS 1-1 RS 1-3 RS 2-1 RS 2-3 RS 3-1 RS 3-3 RS 5-1 RS 5-3
    BS BS 0-1 BS 0-3 BS 1-1 BS 1-3 BS 2-1 BS 2-3 BS 3-1 BS 3-3 BS 5-1 BS 5-3
    CS CS 0-1 CS 0-3 CS 1-1 CS 1-3 CS 2-1 CS 2-3 CS 3-1 CS 3-3 CS 5-1 CS 5-3
    下载: 导出CSV

    表  4  施用3%猪粪有机肥土壤的有效态Cu占比与老化时间的线性回归模型

    Table  4.   Linear regression model between the proportion of available Cu in soil applied with 3% pig manure and aging time

    土壤类型
    Soil type
    方程表达式
    Equation expression
    R2P
    YCS y = –2.373t + 24.29 0.832 < 0.01
    RS y = −0.407t + 18.16 0.360 < 0.10
    BS y = −0.743t + 7.796 0.898 < 0.01
    CS y = −0.753t + 11.71 0.797 < 0.01
      注:y为施用3%猪粪土壤的有效态Cu含量占比,t为猪粪的老化时间。P < 0.01的相关系数临界值为0.735,P < 0.05的相关系数临界值为0.602。
    下载: 导出CSV
  • [1] 何梦媛, 董同喜, 茹淑华, 等. 畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异[J]. 环境科学, 2017, 38(4): 1576 − 1586.
    [2] Ma D, Yin L, Ju W, et al. Meta-analysis of green manure effects on soil properties and crop yield in northern China[J]. Field Crops Research, 2021, 266: 108 − 146.
    [3] 阎波杰, 赵春江, 潘瑜春, 等. 大兴区农用地畜禽粪便氮负荷估算及污染风险评价[J]. 环境科学, 2010, 31(2): 437 − 443.
    [4] 刘 春, 刘晨阳, 王济民, 等. 我国畜禽粪便资源化利用现状与对策建议[J]. 中国农业资源与区划, 2021, 42(2): 35 − 43.
    [5] Untea A, Criste R, Panaite T, et al. Effect of the dietary oregano (Origanum vulgare) on Cu and Zn balance in weaned piglets[J]. Journal Of Trace Elements In Medicine And Biology, 2011, 25: S35 − S40. doi: 10.1016/j.jtemb.2010.10.011
    [6] Zhang Q, Zou D, Zeng X, et al. Effect of the direct use of biomass in agricultural soil on heavy metals activation or immobilization?[J]. Environmental Pollution, 2021, 272: 115989. doi: 10.1016/j.envpol.2020.115989
    [7] Hu Y A, Cheng H F, Tao S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation[J]. Environment International, 2017, 107: 111 − 130. doi: 10.1016/j.envint.2017.07.003
    [8] Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science Of the Total Environment, 2010, 408(5): 1069 − 1075. doi: 10.1016/j.scitotenv.2009.11.014
    [9] 袁 凯, 熊苏雅, 梁 静, 等. 畜禽粪便中铜和锌污染现状及风险分析[J]. 农业环境科学学报, 2020, 39(8): 1837 − 1842. doi: 10.11654/jaes.2020-0142
    [10] 贾武霞, 文 炯, 许望龙, 等. 我国部分城市畜禽粪便中重金属含量及形态分布[J]. 农业环境科学学报, 2016, 35(4): 764 − 773. doi: 10.11654/jaes.2016.04.022
    [11] Zhao Y C, Yan Z B, Qin J H, et al. Effects of long-term cattle manure application on soil properties and soil heavy metals in corn seed production in Northwest China[J]. Environmental Science And Pollution Research, 2014, 21(12): 7586 − 7595. doi: 10.1007/s11356-014-2671-8
    [12] Hu W Y, Wang H F, Dong L R, et al. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach[J]. Environmental Pollution, 2018, 237: 650 − 661. doi: 10.1016/j.envpol.2018.02.070
    [13] 王腾飞, 谭长银, 曹雪莹, 等. 长期施肥对土壤重金属积累和有效性的影响[J]. 农业环境科学学报, 2017, 36(2): 257 − 263. doi: 10.11654/jaes.2016-0986
    [14] 王 美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报, 2014, 20(2): 466 − 480. doi: 10.11674/zwyf.2014.0224
    [15] Tandy S, Healey J R, Nason M A, et al. Heavy metal fractionation during the co-composting of biosolids, deinking paper fibre and green waste[J]. Bioresource Technology, 2009, 100(18): 4220 − 4226. doi: 10.1016/j.biortech.2009.02.046
    [16] Li Z, Liang Y, Hu H, et al. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety[J]. Environment international, 2021, 156: 106749. doi: 10.1016/j.envint.2021.106749
    [17] 王开峰, 彭 娜, 王凯荣, 等. 长期施用有机肥对稻田土壤重金属含量及其有效性的影响[J]. 水土保持学报, 2008, (1): 105 − 108. doi: 10.3321/j.issn:1009-2242.2008.01.023
    [18] 李顺江, 李 鹏, 李新荣, 等. 不同肥源、施氮量对土壤-作物系统中铬、镉含量的影响[J]. 农业资源与环境学报, 2015, 32(3): 235 − 241.
    [19] Laurent C, Bravin M N, Crouzet O, et al. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination[J]. Science Of the Total Environment, 2020, 709: 135927. doi: 10.1016/j.scitotenv.2019.135927
    [20] 宋文恩, 郭雪雁, 陈世宝, 等. 酸化方式对土壤中铜的形态及生物有效性的影响[J]. 农业环境科学学报, 2014, 33(12): 2343 − 2349. doi: 10.11654/jaes.2014.12.010
    [21] Souza C D C B D, Amaral Sobrinho N M B D, Lima E S A, et al. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting[J]. Journal of Environmental Management, 2019, 247: 291 − 298.
    [22] 王怡雯, 许 浩, 茹淑华, 等. 有机肥连续施用对土壤剖面有机碳分布的影响及其与重金属的关系[J]. 生态学杂志, 2019, 38(05): 1500 − 1507.
    [23] Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environmental Science & Technology, 2000, 34(20): 4259 − 4265.
    [24] 刘 平, 王 辉, 董元华, 等. 有机肥施用对土壤铜形态的影响研究[J]. 土壤, 2013, 45(5): 910 − 917.
    [25] 莫 争, 王春霞, 陈 琴, 等. 重金属Cu Pb Zn Cr Cd在土壤中的形态分布和转化[J]. 农业环境保护, 2002, (1): 9 − 12.
    [26] 卢秉林, 王文丽, 李 娟, 等. 添加小麦秸秆对猪粪高温堆肥腐熟进程的影响[J]. 环境工程学报, 2010, 4(4): 926 − 930.
    [27] 鲍士旦. 土壤农化分析. 3版[M]. 土壤农化分析. 3版, 2000.
    [28] Cao F, Kong L, Yang L, et al. Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province, China[J]. Environmental Science & Pollution Research, 2015, 22(17): 1 − 10.
    [29] 熊采华. 制修订生态地球化学评价样品分析技术规范[M].
    [30] 马荣辉, 朱 蕊, 宗玉统, 等. 猪粪对黑土-水稻系统中铜的化学形态、生物积累和有效性的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 108 − 118.
    [31] 赵 婷, 束良佐, 于红梅, 等. 长期施肥对砂姜黑土重金属形态特征的影响[J]. 安徽农业大学学报, 2013, 40(5): 855 − 859.
    [32] Lock K, Janssen C R: Influence of aging on metal availability in soils, Ware G W, editor, Reviews Of Environmental Contamination And Toxicology, Vol 178, 2003: 1-21.
    [33] Mclaughlin M J. Adelaide Research and Scholarship: Ageing of Metals in Soils Changes Bioavailability[J]. International Council on Metals and the Environment, 2001.
    [34] 张 璠, 赵玉杰, 马秀兰, 等. 基于DGT技术分析土壤重金属Cd、Ni的老化特征[J]. 农业环境科学学报, 2019, 38(11): 2487 − 2495. doi: 10.11654/jaes.2019-0196
    [35] 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31 (10): 1669-1676.
    [36] Souza C D C B D, Sobrinho N M B D A, Lima E S A, et al. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting[J]. Journal of Environmental Management, 2019, 247(Oct.1): 291 − 298.
    [37] 颜蒙蒙, 贾武霞, 苏世鸣, 等. 猪粪中铜、锌与等量水溶性盐对两种叶类蔬菜的植物有效性比较[J]. 农业环境科学学报, 2018, 37(2): 223 − 231. doi: 10.11654/jaes.2017-1052
    [38] Chen G, Shah K J, Shi L, et al. Red soil amelioration and heavy metal immobilization by a multi-element mineral amendment: Performance and mechanisms[J]. Environmental Pollution, 2019, 254 (Pt A): 112964.
    [39] Shah K J, Pan S-Y, Shukla A D, et al. Mechanism of organic pollutants sorption from aqueous solution by cationic tunable organoclays[J]. Journal of Colloid And Interface Science, 2018, 529: 90 − 99. doi: 10.1016/j.jcis.2018.05.094
    [40] Zhong X, Chen Z W, Li Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal Of Hazardous Materials, 2020: 400.
    [41] 景丽洁, 王 敏. 不同类型土壤对重金属的吸附特性[J]. 生态环境, 2008, (1): 245 − 248.
    [42] Formentini T A, Mallmann F J K, Pinheiro A, et al. Copper and zinc accumulation and fractionation in a clayey Hapludox soil subject to long-term pig slurry application[J]. Science of the Total Environment, 2015, 536(dec.1): 831 − 839.
    [43] Paradelo R, Cambier P, Jara-Miranda A, et al. Mobility of Cu and Zn in Soil Amended with Composts at Different Degrees of Maturity[J]. Waste And Biomass Valorization, 2017, 8(3): 633 − 643. doi: 10.1007/s12649-016-9641-y
    [44] 黄兴洁, 吴 昊, 李婉秋, 等. 猪粪有机肥中可溶性有机组分对小白菜生长及Cu吸收的影响[J]. 生态与农村环境学报, 2021, 37(1): 80 − 85.
    [45] 郭 微, 戴九兰, 王仁卿. 溶解性有机质影响土壤吸附重金属的研究进展[J]. 土壤通报, 2012, 43(3): 761 − 768.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  40
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 录用日期:  2022-03-25
  • 修回日期:  2022-01-16
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回