留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机培肥对连作花生土壤肥力及活性有机碳库的影响

高欣 赵雪淞 赵凤艳 高传俊 冯良山

高 欣, 赵雪淞, 赵凤艳, 高传俊, 冯良山. 有机培肥对连作花生土壤肥力及活性有机碳库的影响[J]. 土壤通报, 2023, 54(1): 67 − 76 doi: 10.19336/j.cnki.trtb.2021100503
引用本文: 高 欣, 赵雪淞, 赵凤艳, 高传俊, 冯良山. 有机培肥对连作花生土壤肥力及活性有机碳库的影响[J]. 土壤通报, 2023, 54(1): 67 − 76 doi: 10.19336/j.cnki.trtb.2021100503
GAO Xin, ZHAO Xue-song, ZHAO Feng-yan, GAO Chuan-jun, FENG Liang-shan. Effect of Organic Fertilizer on Soil Fertility and Active Organic Carbon Pool in Monocultured Peanut Fields[J]. Chinese Journal of Soil Science, 2023, 54(1): 67 − 76 doi: 10.19336/j.cnki.trtb.2021100503
Citation: GAO Xin, ZHAO Xue-song, ZHAO Feng-yan, GAO Chuan-jun, FENG Liang-shan. Effect of Organic Fertilizer on Soil Fertility and Active Organic Carbon Pool in Monocultured Peanut Fields[J]. Chinese Journal of Soil Science, 2023, 54(1): 67 − 76 doi: 10.19336/j.cnki.trtb.2021100503

有机培肥对连作花生土壤肥力及活性有机碳库的影响

doi: 10.19336/j.cnki.trtb.2021100503
基金项目: 国家自然科学基金项目(31870339)和沈阳市科学技术计划项目(20-203-5-56)资助
详细信息
    作者简介:

    高欣:高 欣(1996−),女,河北省秦皇岛市人,硕士,研究方向为生态修复理论与技术。E-mail: 987112591@qq.com

    通讯作者:

    E-mail: zhaoxs210@163.com

    E-mail: fenglsh@163.com

  • 中图分类号: S147.2

Effect of Organic Fertilizer on Soil Fertility and Active Organic Carbon Pool in Monocultured Peanut Fields

  • 摘要:   目的  针对花生连作及化肥滥用导致土壤肥力下降、土壤碳库失衡等问题,开展有机培肥改善连作花生田土壤质量研究。  方法  实验选取连作5年的花生田建立四个完全随机区组,设置蚯蚓粪配施化肥(VM)、“NMM”菌肥配施化肥(BF)、单施化肥(CF)和无施入对照(CK)四个处理,在花生结荚期取样并比较土壤综合肥力指数、土壤活性有机碳含量及有效率、土壤碳库管理指数的变化。  结果  与CK和CF相比,有机培肥显著提高了土壤综合肥力指数、土壤有机碳及易氧化有机碳、微生物生物量碳、可矿化有机碳含量和碳库管理指数(P < 0.05),其中VM处理效果最佳;有机培肥土壤微生物生物量碳、可矿化有机碳和可溶性有机碳有效率较CK和CF显著降低。冗余分析和相关性分析表明有机培肥与土壤总有机碳及各活性有机碳含量显著正相关,与除了易氧化有机碳有效率以外的其他土壤活性有机碳有效率呈负相关;碳库管理指数与易氧化有机碳、微生物量碳、可溶性有机碳、可矿化有机碳显著(P < 0.05)或极显著(P < 0.01)正相关。  结论  合理有机培肥能够提高土壤活性有机碳含量,同时有助于土壤非活性有机碳的积累。有机培肥对提高连作花生田土壤综合肥力和土壤碳库储量、缓解连作障碍有显著作用。
  • 图  1  不同处理土壤有机碳含量

    不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。

    Figure  1.  Soil organic carbon content in different treatments

    图  2  不同处理土壤颗粒有机碳含量

    不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。

    Figure  2.  The content of soil particulate organic carbon in different treatments

    图  3  不同处理土壤易氧化有机碳含量

    不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。

    Figure  3.  The content of soil oxidizable organic carbon in different treatments

    图  4  不同处理土壤微生物生物量碳含量

    不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。

    Figure  4.  Soil microbial biomass carbon content in different treatments

    图  5  不同处理土壤可溶性有机碳含量

    不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。

    Figure  5.  Soil soluble organic carbon content in different treatments

    图  6  不同处理土壤可矿化有机碳含量

    不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。

    Figure  6.  The content of soil mineralizable organic carbon in different treatments

    图  7  不同处理土壤碳库指标的冗余分析

    VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥,TOC:土壤有机碳,POC:颗粒有机碳,ROC:易氧化有机碳,MBC:微生物生物量碳,DOC:可溶性有机碳,MOC:可矿化有机碳,CPMI:碳库管理指数。

    Figure  7.  Redundant analysis of soil carbon pool indices in different treatments

    表  1  土壤各属性的分级标准值

    Table  1.   The grading standards of soil properties

    分级
    Grade
    有机质(g kg−1)
    Organic matter
    pH
    碱解氮(mg kg−1)
    Alkaline hydrolyzed nitrogen
    速效磷(mg kg−1)
    Available phosphorus
    速效钾(mg kg−1)
    Available potassium
    Xa 10 4.5 60 3 40
    Xc 20 6.5 120 10 100
    Xp 30 8.5 180 20 150
    下载: 导出CSV

    表  2  土壤肥力指标含量及土壤综合肥力指数

    Table  2.   Contents of soil fertility index and indices of soil integrated fertility

    处理
    Treatment
    有机质
    Organic matter
    (g kg−1
    pH碱解氮
    Alkaline hydrolyzed
    nitrogen
    (mg kg−1)
    速效磷
    Available phosphorus
    (mg kg−1
    速效钾
    Available potassium
    (mg kg−1
    土壤综合肥力指数
    Soil integrated
    fertility index
    (IFI)
    VM 8.51 ± 0.11 a 6.25 ± 0.03 a 69.57 ± 0.51 a 28.35 ± 0.05 a 74.98 ± 0.04 a 0.89 ± 0.00 a
    BF 8.28 ± 0.45 a 6.16 ± 0.02 b 68.29 ± 0.40 b 11.40 ± 0.15 b 74.28 ± 0.20 b 0.87 ± 0.02 a
    CF 7.25 ± 0.27 b 6.10 ± 0.02 b 66.49 ± 0.24 c 10.87 ± 0.09 c 73.95 ± 0.10 c 0.82 ± 0.01 b
    CK 6.56 ± 0.35 c 5.96 ± 0.09 c 66.44 ± 0.37 c 10.31 ± 0.20 d 73.38 ± 0.11 d 0.80 ± 0.05 b
      注:同列不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。
    下载: 导出CSV

    表  3  不同处理土壤活性有机碳各组分有效率(%)

    Table  3.   Effective rate of each component of soil activated organic carbon under different treatments (%)

    处理
    Treatment
    POC/TOCROC/TOCMBC/TOCMOC/TOCDOC/TOC
    VM 26.42 ± 11.56 a 30.08 ± 1.34 a 6.10 ± 0.15 b 4.12 ± 0.12 b 0.81 ± 0.06 ab
    BF 29.07 ± 18.74 a 28.64 ± 1.88 a 6.03 ± 0.39 b 3.92 ± 0.22 b 0.72 ± 0.04 b
    CF 34.77 ± 11.15 a 29.24 ± 1.71 a 6.39 ± 0.27 b 4.10 ± 0.17 b 0.90 ± 0.09 a
    CK 31.27 ± 13.80 a 29.11 ± 2.86 a 6.82 ± 0.30 a 4.32 ± 0.27 a 0.89 ± 0.14 a
    注:同列不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。
    下载: 导出CSV

    表  4  有机培肥对土壤碳库管理指数(CPMI)的影响

    Table  4.   Effect of organic fertilization on soil carbon pool management index (CPMI)

    处理
    Treatment
    碳库指数
    Carbon pool index
    碳库活度
    Carbon pool activity
    碳库活度指数
    Carbon Pool activity index
    碳库管理指数
    Carbon Pool management index
    VM 1.30 ± 0.08 a 0.45 ± 0.01 ab 0.99 ± 0.07 a 126.85 ± 4.53 a
    BF 1.26 ± 0.09 a 0.43 ± 0.04 b 0.92 ± 0.09 a 115.40 ± 3.36 b
    CF 1.11 ± 0.08b 0.46 ± 0.03 ab 0.99 ± 0.10 a 108.96 ± 3.64 c
    CK 1.00 ± 0.00 c 0.47 ± 0.04 a 1.00 ± 0.00 a 100.00 ± 0.00 d
    注:同列不同字母表示差异达5%为显著水平。VM:蚯蚓粪配施化肥,BF:“NMM”菌肥配施化肥,CF:单施化肥,CK:不施肥。
    下载: 导出CSV

    表  5  土壤活性有机碳各组分、活性有机碳各组分有效率及碳库管理指数之间的相关系数

    Table  5.   Correlation coefficients between the components of soil activated organic carbon, the effective rate of activated organic carbon components and carbon pool management index

    POCROCMBCDOCMOCPOC/TOCROC/TOCMBC/TOCDOC/TOCMOC/TOCCPMI
    POC 1 −0.073 −0.009 0.006 −0.015 0.968** −0.393 −0.3 −0.161 −0.345 0.067
    ROC 1 0.852** 0.409* 0.906** −0.271 0.384 −0.643** −0.413* −0.308 0.875**
    MBC 1 0.391 0.879** −0.22 0.043 −0.559** −0.472* −0.427* 0.853**
    DOC 1 0.495* −0.094 0.189 −0.191 0.522** 0.092 0.425*
    PCM 1 −0.22 0.156 −0.663** −0.377 −0.231 0.921**
      注:**表示极显著相关P<0.01,*表示显著相关P < 0.05。TOC:土壤有机碳,POC:颗粒有机碳,ROC:易氧化有机碳,MBC:微生物生物量碳,DOC:可溶性有机碳,MOC:可矿化有机碳,CPMI:碳库管理指数。
    下载: 导出CSV
  • [1] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008 − 1010. doi: 10.1126/science.1182570
    [2] Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926 − 929. doi: 10.1126/science.1156401
    [3] Zhang X, Davidson E A, Mauzerall D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51 − 59. doi: 10.1038/nature15743
    [4] 荣勤雷, 梁国庆, 周 卫, 等. 不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响[J]. 植物营养与肥料学报, 2014, 20: 1168 − 1177. doi: 10.11674/zwyf.2014.0513
    [5] 黄鸿翔, 李书田, 李向林, 等. 我国有机肥的现状与发展前景分析[J]. 中国土壤与肥料, 2006, 1: 3 − 8. doi: 10.11838/sfsc.20060201
    [6] 柳开楼, 黄 晶, 张会民, 等. 基于红壤稻田肥力与相对产量关系的水稻生产力评估[J]. 植物营养与肥料学报, 2018, 24(6): 1425 − 1434. doi: 10.11674/zwyf.18150
    [7] 陈 贵, 张红梅, 沈亚强, 等. 猪粪与牛粪有机肥对水稻产量、养分利用和土壤肥力的影响[J]. 土壤, 2018, 50(1): 59 − 65.
    [8] 李继蕊, 史庆华, 王秀峰, 等. 不同配比蚯蚓堆肥和牛粪堆肥对根际微环境及黄瓜产量、品质的影响[J]. 山东农业科学, 2013, 45(6): 66 − 70. doi: 10.3969/j.issn.1001-4942.2013.06.018
    [9] 张晓绪, 张嘉伟, 孙星星, 等. 蚯蚓粪对镉在土壤-水稻系统中迁移转化影响[J]. 农业环境科学学报, 2020, 39(8): 1723 − 1733. doi: 10.11654/jaes.2020-0110
    [10] 方 成, 代子雯, 李伟明, 等. 化肥减施配施不同有机肥对甜糯玉米产量和品质的影响[J]. 生态学杂志, 2021, 40(5): 1347 − 1355.
    [11] 刘大伟, 陈井生, 王 芳, 等. 蚯蚓粪在农业生产中的应用研究进展[J]. 湖北农业科学, 2019, 58(14): 8 − 11.
    [12] 张聪俐, 戴 军, 周 波, 等. 不同比例蚓粪对玉米生长以及土壤肥力特性的影响[J]. 华南农业大学学报, 2013, 34(2): 137 − 143. doi: 10.7671/j.issn.1001-411X.2013.02.003
    [13] Yan D Z, Wang D J, Yang L Z. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil[J]. Biology and Fertility of Soil, 2007, 44: 93 − 101. doi: 10.1007/s00374-007-0183-0
    [14] Schulz E. Influence of site conditions and management on different soil organic matter (SOM) pools[J]. Archives of Agronomy and Soil Science, 2004, 50: 33 − 48. doi: 10.1080/03650340310001627577
    [15] Lefroy R D B, Blair G J, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155/156(1): 399 − 402. doi: 10.1007/BF00025067
    [16] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 − 1466. doi: 10.1071/AR9951459
    [17] 张 影, 刘 星, 任秀娟, 等. 秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响[J]. 水土保持学报, 2019, 33(3): 153 − 159,165.
    [18] 谢钧宇, 孟会生, 焦 欢, 等. 施肥对复垦土壤中活性和难降解碳氮组分的影响[J]. 应用与环境生物学报, 2019, 25(5): 1113 − 1121.
    [19] Leifeld J, Kogel K I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use[J]. Geoderma, 2005, 124(1-2): 143 − 155. doi: 10.1016/j.geoderma.2004.04.009
    [20] 张宁宁, 侯 婷, 严加坤, 等. 不同恢复年限樟子松林地的土壤氮磷效应[J]. 广西林业科学, 2019, 48(3): 285 − 289. doi: 10.3969/j.issn.1006-1126.2019.03.002
    [21] 张建勇, 肖 武, 王 铮, 等. 基于全排列多边形图示指标法的土壤肥力质量评价[J]. 中国生态农业学报, 2015, 23(10): 1285 − 1292.
    [22] Doran J W, Coleman D C, Bezdicek D F, et al. Defining soil quality for a sustainable environment[M]. SSSA Special Publication. Madison, WI, USA: Soil Science Society of America, 1994.
    [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [24] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777 − 783. doi: 10.2136/sssaj1992.03615995005600030017x
    [25] 周吉祥, 张 贺, 杨 静, 等. 连续施用土壤改良剂对沙质潮土肥力及活性有机碳组分的影响[J]. 中国农业科学, 2020, 53(16): 3307 − 3318. doi: 10.3864/j.issn.0578-1752.2020.16.009
    [26] 沈 宏, 曹志洪. 长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J]. 热带亚热带土壤科学, 1998, 1: 1 − 5.
    [27] Zhao B Z, Zhang J B, Yu Y Y, et al. Crop residue management and fertilization effects on soil organic matter and associated biological properties[J]. Environmental Science and Pollution Research, 2016, 23(17): 1717581 − 17591.
    [28] Li Z Q, Zhao B Z, Hao X Y, et al. Effects of residue incorporation and plant growth on soil labile organic carbon and microbial function and community composition under two soil moisture levels[J]. Environmental Science and Pollution Research, 2017, 24(23): 18849 − 18859. doi: 10.1007/s11356-017-9529-9
    [29] 姬 强, 孙汉印, 王 勇, 等. 土壤颗粒有机碳和矿质结合有机碳对4种耕作措施的响应[J]. 水土保持学报, 2012, 26(2): 132 − 137.
    [30] 闫 锐, 李彦霖, 邓良基, 等. 3种有机物料对宅基地复垦土壤易变有机碳的影响[J]. 水土保持学报, 2016, 30(4): 233 − 241.
    [31] 孙凤霞, 张伟华, 徐明岗, 等. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J]. 应用生态学报, 2010, 21(11): 2792 − 2798.
    [32] Yasser R, Boris J, John R P, et al. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc: A column experiment[J]. Journal of Environmental Management, 2017, 187: 273 − 285.
    [33] 李忠佩, 张桃林, 陈碧云, 等. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4): 544 − 552. doi: 10.3321/j.issn:0564-3929.2004.04.008
    [34] 赵 红, 吕贻忠, 杨 希, 等. 不同配肥方案对黑土有机碳含量及碳库管理指数的影响[J]. 中国农业科学, 2016, 42(9): 3164 − 3169.
    [35] 杨宇虹, 晋 艳, 杨丽萍, 等. 有机肥的不同配置对烤烟生长的影响[J]. 中国农学通报, 2007, (2): 290 − 293. doi: 10.3969/j.issn.1000-6850.2007.02.069
    [36] 谭 骏, 黄 河, 汤 薇, 等. 蚯蚓粪有机肥对土壤微生物群落的影响[J]. 江苏农业科学, 2021, 49(20): 228 − 233.
    [37] Guo L Y, Wu G L, Li Y, et al. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in Eastern China[J]. Soil and Tillage Research, 2016, 156: 140 − 147. doi: 10.1016/j.still.2015.10.010
    [38] 吴 萌, 李忠佩, 冯有智, 等. 长期施肥处理下不同类型水稻土有机碳矿化的动态差异[J]. 中国农业科学, 2016, 49(9): 1705 − 1714. doi: 10.3864/j.issn.0578-1752.2016.09.007
    [39] 陈安强, 付 斌, 鲁 耀, 等. 有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮[J]. 农业工程学报, 2015, 31(21): 160 − 167. doi: 10.11975/j.issn.1002-6819.2015.21.021
    [40] Aynehband A, Gorooei A, Moczzi A A. Vermicompost: an eco-friendly technology for crop residue management in organic agriculture[J]. Energy Procedia, 2017, 141: 667 − 671. doi: 10.1016/j.egypro.2017.11.090
    [41] Blunden G, Morse P F, Mathe I, et al. Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture[J]. Natural Product Communications, 2010, 5(4): 581 − 585.
    [42] 李 云, 孙 波, 李忠佩, 等. 不同气候条件对旱地红壤微生物群落代谢特征的长期影响[J]. 土壤, 2011, 43(1): 60 − 66.
    [43] 武晓森, 杜广红, 穆春雷, 等. 不同施肥处理对农田土壤微生物区系和功能的影响[J]. 植物营养与肥料学报, 2014, 20(1): 99 − 109. doi: 10.11674/zwyf.2014.0111
    [44] 梁 超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学:地球科学, 2021, 51(5): 680 − 695.
    [45] Chen W, Teng Y, Li Z G, et al. Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of south China[J]. Applied Soil Ecology, 2018, 128: 23 − 24. doi: 10.1016/j.apsoil.2018.03.018
    [46] 赵 营, 郭鑫年, 罗健航, 等. 灌淤土农田土壤有机碳及碳库管理指数对施肥措施的响应[J]. 干旱地区农业研究, 2016, 34(3): 16 − 22. doi: 10.7606/j.issn.1000-7601.2016.03.03
    [47] 李 硕, 李有兵, 王淑娟, 等. 关中平原作物秸秆不同还田方式对土壤有机碳和碳库管理指数的影响[J]. 应用生态学报, 2015, 26(4): 1215 − 1222.
    [48] 王 晶, 朱 平, 等. 施肥对黑土活性有机碳和碳库管理指数的影响[J]. 土壤通报, 2003, 34(5): 394 − 397. doi: 10.3321/j.issn:0564-3945.2003.05.004
    [49] 张 璐, 任天宝, 阎海涛, 等. 不同有机物料对烤烟根际土壤碳库、酶活性及根系活力的影响[J]. 中国烟草科学, 2018, 39(2): 39 − 45.
    [50] 杨 旭, 兰 宇, 孟 军, 等. 秸秆不同还田方式对旱地棕壤CO2排放和土壤碳库管理指数的影响[J]. 生态学杂志, 2015, 34(3): 805 − 809.
    [51] 杨雅丽, 马雪松, 解宏图, 等. 保护性耕作对土壤微生物群落及其介导的碳循环功能的影响[J]. 应用生态学报, 2021, 32(8): 2675 − 2684.
    [52] 袁嘉欣, 杨滨娟, 胡启良, 等. 长江中游稻田种植模式对土壤有机碳及碳库管理指数的影响[J]. 中国生态农业学报(中英文), 2021, 29(7): 1205 − 1214.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  39
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-05
  • 录用日期:  2022-04-20
  • 修回日期:  2022-04-06
  • 网络出版日期:  2023-02-02
  • 刊出日期:  2023-02-06

目录

    /

    返回文章
    返回