留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从微生物角度揭示气候变暖对土壤有机碳转化影响的研究综述

刘峰 赵鹏程 张昀 高晓丹 沙飞 孙萌 张景雯

刘 峰, 赵鹏程, 张 昀, 高晓丹, 沙 飞, 孙 萌, 张景雯. 从微生物角度揭示气候变暖对土壤有机碳转化影响的研究综述[J]. 土壤通报, 2022, 53(6): 1492 − 1498 doi: 10.19336/j.cnki.trtb.2021092001
引用本文: 刘 峰, 赵鹏程, 张 昀, 高晓丹, 沙 飞, 孙 萌, 张景雯. 从微生物角度揭示气候变暖对土壤有机碳转化影响的研究综述[J]. 土壤通报, 2022, 53(6): 1492 − 1498 doi: 10.19336/j.cnki.trtb.2021092001
LIU Feng, ZHAO Peng-cheng, ZHANG Yun, GAO Xiao-dan, SHA Fei, SUN Meng, ZHANG Jing-wen. Effects of Climate Warming on Soil Organic Carbon Storage from the Viewpoint of Soil Microorganism[J]. Chinese Journal of Soil Science, 2022, 53(6): 1492 − 1498 doi: 10.19336/j.cnki.trtb.2021092001
Citation: LIU Feng, ZHAO Peng-cheng, ZHANG Yun, GAO Xiao-dan, SHA Fei, SUN Meng, ZHANG Jing-wen. Effects of Climate Warming on Soil Organic Carbon Storage from the Viewpoint of Soil Microorganism[J]. Chinese Journal of Soil Science, 2022, 53(6): 1492 − 1498 doi: 10.19336/j.cnki.trtb.2021092001

从微生物角度揭示气候变暖对土壤有机碳转化影响的研究综述

doi: 10.19336/j.cnki.trtb.2021092001
基金项目: 辽宁省自然科学基金项目(LJKZ0666)资助
详细信息
    作者简介:

    刘峰:刘 峰(1995−),男,内蒙古包头人,硕士研究生,从事土壤肥力与地力提升研究。E-mail:liufeng08262021@163.com

    通讯作者:

    E-mail: xingyun92757@163.com

  • 中图分类号: S158.5

Effects of Climate Warming on Soil Organic Carbon Storage from the Viewpoint of Soil Microorganism

  • 摘要: 土壤有机碳(SOC)是维持陆地生态系统生产力和可持续性的关键,以CO2为主的温室气体过量排放导致全球气候持续变暖,对全球SOC转化产生关键作用。微生物是SOC周转的动力,是全球变暖影响SOC储量与化学特性的关键媒介。研究发现,气候变暖导致大部分农田和森林有机碳储量下降,但草原有机碳含量升高,这可能与微生物对有机碳的异化分解和同化固定之间的权衡有关。气温升高可直接提高微生物的呼吸活性,导致真菌在土壤微生物的比例降低,而细菌所占比例升高,对土壤碳库储存产生不利影响;在永久和半永久冻土中,冻融促进土壤活性有机碳库的释放,提高了土壤微生物的碳矿化速率,导致有机碳严重的矿化流失。然而,气温升高和与之相伴的CO2浓度升高有利于植物生长,使得植物光合作用增强,向土壤中输入的有机碳增加;这些外源有机碳在微生物的作用下转化为稳定的SOC,有利于SOC累积。尽管已有大量研究,但气候变暖对SOC库的整体影响与微生物机制仍不明确。从多角度入手,深入认识气候-微生物-SOC之间的关系,有利于在全球变化的大背景下,充分发挥土壤碳汇效应,为“碳达峰”和“碳中和”提供理论与政策依据。
  • [1] Briones, Maria J I, McNamara, et al. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils[J]. Global Change Biology, 2014, 20(9): 2971 − 2982. doi: 10.1111/gcb.12585
    [2] Wei L, Ge T D, Zhu Z K, et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers[J]. Geoderma, 2021, 398: 115121. doi: 10.1016/j.geoderma.2021.115121
    [3] Ge T D, Luo Y, He X H. Quantitative and mechanistic insights into the key process in the rhizodeposited carbon stabilization, transformation and utilization of carbon, nitrogen and phosphorus in paddy soil[J]. Plant and Soil, 2019, 445: 1 − 5. doi: 10.1007/s11104-019-04347-9
    [4] 祝贞科, 肖谋良, 魏 亮, 等. 稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策[J]. 中国生态农业学报 (中英文), 2022, 30(4): 592 − 602.
    [5] Liu Y L, Ge T D, Zhu Z K, et al. Carbon input and allocation by rice into paddy soils: A review[J]. Soil Biology and Biochemistry, 2019, 133: 97 − 107. doi: 10.1016/j.soilbio.2019.02.019
    [6] Cui J, Zhu Z K, Xu X L, et al. Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming[J]. Soil Biology and Biochemistry, 2020, 142: 107720. doi: 10.1016/j.soilbio.2020.107720
    [7] Nottingham A T, Reischke S, Salinas N, et al. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes[J]. Global Change Biology, 2019, 25(3): 827 − 838. doi: 10.1111/gcb.14502
    [8] Chao L, Cheng G, Wixon D L, et al. An absorbing Markov chain approach to understanding the microbial role in soil carbon stabilization[J]. Biogeochemistry, 2011, 106(3): 303 − 309. doi: 10.1007/s10533-010-9525-3
    [9] Bell C, Mcintyre N, Cox S, et al. Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert grassland[J]. Microbial Ecology, 2008, 56(1): 153 − 167. doi: 10.1007/s00248-007-9333-z
    [10] Xue K, Yuan Z, Shi Z, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature Climate Change, 2016, 6(6): 595 − 600. doi: 10.1038/nclimate2940
    [11] Zhang W D, Yuan S F, Hu N, et al. Predicting soil fauna effect on plant litter decomposition by using boosted regression trees[J]. Soil Biology and Biochemistry, 2015, 82: 81 − 86. doi: 10.1016/j.soilbio.2014.12.016
    [12] Crowther T W, Todd-Brown K, Rowe C W, et al. Quantifying global soil carbon losses in response to warming[J]. Nature, 2016, 540(7631): 104 − 108. doi: 10.1038/nature20150
    [13] Lu M, Zhou X, Yang Q, et al. Responses of ecosystem carbon cycle to experimental warming: a mate analysis[J]. Ecology, 2013, 94(3): 726 − 738. doi: 10.1890/12-0279.1
    [14] Vanishing winters in germany: soil frost dynamics and snow cover trends, and ecological implications[J]. Climate Research, 2011, 46(3): 269 - 276.
    [15] Johnston A, Meade A, Ard J, et al. Temperature thresholds of ecosystem respiration at a global scale[J]. Nature Ecology & Evolution, 2021, 5: 487 − 494.
    [16] Karhu K, M D Auffret, Dungait J, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response[J]. Nature, 2014, 513: 81 − 84. doi: 10.1038/nature13604
    [17] Dieleman W, Vicca S, Dijkstra F A, et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature[J]. Global Change Biology, 2012, 18(9): 2681 − 2693. doi: 10.1111/j.1365-2486.2012.02745.x
    [18] Black C K, Davis S C, Hudiburg T W, et al. Elevated CO2 and temperature increase soil C losses from a soybean maize ecosystem[J]. Global Change Biology, 2016, 23(1): 435 − 445.
    [19] Calvo OC, Franzaring J, Schmid I, et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley[J]. Global Change Biology, 2017, 23(3): 1292 − 1304. doi: 10.1111/gcb.13503
    [20] Terrer C, Phillips R P, Hungate B A, et al. A trade-off between plant and soil carbon storage under elevated CO2[J]. Nature, 2021, 591(7851): 599 − 603. doi: 10.1038/s41586-021-03306-8
    [21] Luo Y Q, Niu S L. Mature forest shows little increase in carbon uptake in a CO2 enriched atmosphere[J]. Nature, 2020, 580: 191 − 192. doi: 10.1038/d41586-020-00962-0
    [22] García-Palacios P, Crowther T W, Dacal M, et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming[J]. Nature Reviews Earth & Environment, 2021, 2: 507 − 517.
    [23] Shen R C, Xu M, Chi Y G, et al. Microbial membranes related to the thermal acclimation of soil heterotrophic respiration in a temperate steppe in northern china[J]. Science, 2020, 71(3): 11 − 17.
    [24] Bradford M A. Thermal adaptation of decomposer communities in warming soils[J]. Front Microbiol, 2013, 4(5): 334 − 341.
    [25] Mayr C, Miller M, Insam H. Elevated CO2 alters community-level physiological profiles and enzyme activities in alpine grassland[J]. Microbiol Methods, 1999, 36(1): 35 − 43.
    [26] Zhang X Z, Shen Z X, Fu G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau[J]. Applied Soil Ecology, 2015, 87: 32 − 38. doi: 10.1016/j.apsoil.2014.11.012
    [27] Shen R C, Ming X U, Chi Y G, et al. Soil Microbial Responses to Experimental Warming and Nitrogen Addition in a Temperate Steppe of Northern China[J]. Pedosphere, 2014, 24(4): 427 − 436. doi: 10.1016/S1002-0160(14)60029-1
    [28] Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010, 3(5): 336 − 340. doi: 10.1038/ngeo846
    [29] Frey S, Drijber R, Smith H, Melillo J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming[J]. Soil Biology and Biochemistry, 2008, 40(11): 2904 − 2907. doi: 10.1016/j.soilbio.2008.07.020
    [30] Fang X, Zhou G, Li Y, et al. Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest[J]. Biology and Fertility of Soils, 2016, 52(3): 353 − 365. doi: 10.1007/s00374-015-1081-5
    [31] Wang C, Morrissey E M, Rebecca M, et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization[J]. The ISME Journal, 2021, 15(9): 2738 − 2747. doi: 10.1038/s41396-021-00959-1
    [32] Adair K L, Lindgreen S, Poole A M, et al. Above and belowground community strategies respond to different global change Drivers[J]. Scientific Reports, 2019, 9(1): 135 − 139. doi: 10.1038/s41598-018-36836-9
    [33] Zhou J, Deng Y, Shen L, et al. Temperature mediates continental-scale diversity of microbes in forest soils[J]. Nature Communications, 2016, 7: 12083. doi: 10.1038/ncomms12083
    [34] 刘捷豹, 陈光水, 郭剑芬, 等. 森林土壤酶对环境变化的响应研究进展[J]. 生态学报, 2017, 37(1): 110 − 117.
    [35] Wei, Guenet, Vicca, et al. Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure[J]. Soil Biology Biochemistry, 2014, 71(1): 1 − 12.
    [36] Bell T H, Klironomos J N, Henry H. Seasonal Responses of Extracellular Enzyme Activity and Microbial Biomass to Warming and Nitrogen Addition[J]. Soil Science Society of America Journal, 2010, 74(3): 820 − 828. doi: 10.2136/sssaj2009.0036
    [37] Bais, Harsh P, Weir Tiffany L, Perry Laura G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review Plant Biology, 2006, 57(1): 233 − 266. doi: 10.1146/annurev.arplant.57.032905.105159
    [38] Compant S, Cl’ement C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2009, 42(5): 669 − 678.
    [39] Yergeau E, Kowalchuk G A. Responses of antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency[J]. Environmental Microbiology, 2008, 10(9): 2223 − 2235. doi: 10.1111/j.1462-2920.2008.01644.x
    [40] Li J, Pei J, Pendall E, et al. Rising temperature may trigger deep soil carbon loss across forest ecosystems[J]. Advanced Science, 2020, 7(19): 2001242. doi: 10.1002/advs.202001242
    [41] Soong J L, Castanha C, Pries C, et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux[J]. Science Advances, 2021, 7(21): eabd1343. doi: 10.1126/sciadv.abd1343
    [42] Natasja van gestel, Zheng S, Craig W, et al. Predicting soil carbon loss with warming[J]. Nature, 2018, 554: E4 − E5. doi: 10.1038/nature25745
    [43] Soong J L, Janssens I A, Grau O, et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests[J]. Scientific Reports, 2020, 10(1): 2302. doi: 10.1038/s41598-020-58913-8
    [44] Pries, Hicks C E, Castanha, et al. The whole-soil carbon flux in response to warming[J]. Science, 2017, 355: 1420 − 1423. doi: 10.1126/science.aal1319
    [45] Ding J, Chen L, Zhang B, et al. Linking temperature sensitivity of soil CO2 release to substrate, environmental and microbial properties across alpine ecosystems[J]. Global Biogeochemical Cycles, 2016, 30(9): 1310 − 1323. doi: 10.1002/2015GB005333
    [46] Barnard R L, Osborne C A, Firestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal, 2013, 7(11): 2229 − 2241. doi: 10.1038/ismej.2013.104
    [47] Liu S W, Zheng Y J, Ma R Y, et al. Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming[J]. Global Change Biology, 2020, 26(8): 4601 − 4613.
    [48] Soong J L, Fuchslueger L, Sara Marañon㎎imenez, et al. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26: 1953 − 1961. doi: 10.1111/gcb.14962
    [49] Oechel W C, Vourlitis G L, Hastings S J, et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arcticin response to decadal climate warming[J]. Nature, 2000, 406(6799): 978 − 981. doi: 10.1038/35023137
    [50] Mark P, Waldrop, Mary K, et al. Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak-woodland plant communities[J]. Oecologia, 2004, 138(2): 275 − 284. doi: 10.1007/s00442-003-1419-9
    [51] Strickland M S, Lauber C, Fierer N, et al. Testing the functional significance of microbial community composition[J]. Ecology, 2009, 90(2): 441 − 451. doi: 10.1890/08-0296.1
    [52] D. Frey S, Lee J, M. Melillo J, et al The temperature response of soil microbial efficiency and its feedback to climate[J]. Nature Climate Change, 2013, 3(5): 395 − 398.
    [53] Morrissey Ember M, Mau Rebecca L, Schwartz Egbert, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter[J]. The ISME Journal, 2017, 11(8): 1890 − 1899. doi: 10.1038/ismej.2017.43
    [54] Bölscher T, Paterson E, Freitag T, et al. Temperature sensitivity of substrate-use efficiency can result from altered microbial physiology without change to community composition[J]. Soil Biology Biochemistry, 2017, 109: 59 − 69.
    [55] Lange M, Eisenhauer N, Sierra C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications, 2015, 6(1): 804 − 808.
  • 加载中
计量
  • 文章访问数:  142
  • HTML全文浏览量:  259
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-20
  • 录用日期:  2022-04-06
  • 修回日期:  2022-02-17
  • 刊出日期:  2022-12-06

目录

    /

    返回文章
    返回