留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

穴施生物炭对烤烟根区土壤生物学性质的影响

李彩斌 王琛 康俊 郭丰磊 何轶 罗贞宝 王兴 李贵桐

李彩斌, 王 琛, 康 俊, 郭丰磊, 何 轶, 罗贞宝, 王 兴, 李贵桐. 穴施生物炭对烤烟根区土壤生物学性质的影响[J]. 土壤通报, 2023, 54(1): 107 − 116 doi: 10.19336/j.cnki.trtb.2021091302
引用本文: 李彩斌, 王 琛, 康 俊, 郭丰磊, 何 轶, 罗贞宝, 王 兴, 李贵桐. 穴施生物炭对烤烟根区土壤生物学性质的影响[J]. 土壤通报, 2023, 54(1): 107 − 116 doi: 10.19336/j.cnki.trtb.2021091302
LI Cai-bin, WANG Chen, KANG Jun, GUO Feng-lei, HE Yi, LUO Zhen-bao, WANG Xing, LI Gui-tong. Effects of Biochar Application at Root Zone on Soil Biological Properties in Flue-cured Tobacco Field[J]. Chinese Journal of Soil Science, 2023, 54(1): 107 − 116 doi: 10.19336/j.cnki.trtb.2021091302
Citation: LI Cai-bin, WANG Chen, KANG Jun, GUO Feng-lei, HE Yi, LUO Zhen-bao, WANG Xing, LI Gui-tong. Effects of Biochar Application at Root Zone on Soil Biological Properties in Flue-cured Tobacco Field[J]. Chinese Journal of Soil Science, 2023, 54(1): 107 − 116 doi: 10.19336/j.cnki.trtb.2021091302

穴施生物炭对烤烟根区土壤生物学性质的影响

doi: 10.19336/j.cnki.trtb.2021091302
基金项目: 贵州省烟草公司毕节市公司科技项目(2018520500240065)和 中国烟草总公司重点项目(110201902004)资助
详细信息
    作者简介:

    李彩斌(1989−),男,云南曲靖,博士,农艺师,主要研究领域为土壤保育与烟草栽培。E-mail: ynlcb2015@126.com

    通讯作者:

    E-mail: lgtong@cau.edu.cn

  • 中图分类号: S154.2

Effects of Biochar Application at Root Zone on Soil Biological Properties in Flue-cured Tobacco Field

  • 摘要:   目的  为探明生物炭与根系分泌物尼古丁相互作用在烟草栽培过程中对根区土壤生物活性的影响,在毕节市烟草公司七星关何田科技园开展施用不同用量生物炭的田间对比试验。  方法  试验设置CK(0 kg 667 m−2生物炭)、T10(10 kg 667 m−2生物炭)、T20(20 kg 667 m−2生物炭)、T40(40 kg 667 m−2生物炭)和T80(80 kg 667 m−2生物炭)五个处理。采用常规方法测定铵态氮(NH4 + −N)、硝态氮(NO3−N)、热水浸提有机氮(HWON)、中等稳定性有机氮(6 M盐酸水解氮,a-ON)、微生物量碳(MBC)、微生物量氮(MBN)、土壤FDA水解酶活性、土壤基础呼吸(SBR)和土壤可矿化N量(MinN)。  结果  ①生物炭处理降低了土壤FDA水解酶活性,T40与T80处理与CK相比显著下降了33% ~ 55%,与其他处理无显著差异,总体表现为生物炭用量越大,土壤FDA水解活性降低得越大。②土壤基础呼吸(SBR)随着生物炭用量的增加逐渐增强,T40和T80处理比CK处理提高约33%。③土壤外源葡萄糖呼吸方面,T40与T80处理较其它处理显著提高了土壤外源葡萄糖呼吸(P < 0.05),但加入尼古丁后,所有添加生物炭处理的土壤外源葡萄糖呼吸均显著低于CK处理(P < 0.05)。④与单施生物炭相比,添加尼古丁能够刺激土壤氮的矿化,但高量(T80)生物炭会抵消尼古丁的影响效果。  结论  适量施用生物炭可能会降低烤烟根区土壤FDA水解酶活性,提高土壤基础呼吸与氮素矿化潜力。尼古丁则降低了添加生物炭土壤的外源葡萄糖呼吸,提高了土壤氮的矿化潜力,但高量生物炭会减弱尼古丁对土壤的影响。
  • 图  1  移栽穴与烟垄尺寸示意图

    Figure  1.  Schematic diagram of size of transplanting hole and tobacco ridge

    图  2  生物炭用量对土壤FDA水解酶活性的影响

    图中CK、T10、T20、T40和T80分别表示试验处理中的对照(不施生物炭)和生物炭用量(10、20、40和80 kg 666.67 m−2);不同小写英文字母表示处理间有显著性差异( P < 0.05)。

    Figure  2.  The effects of biochar dosage on FDA activity

    图  3  生物炭用量对土壤基础呼吸(SBR)的影响

    图中CK、T10、T20、T40和T80分别表示试验处理中的对照(不施生物炭)和生物炭用量(10、20、40和80 kg 666.67 m−2);不同小写英文字母表示处理间有显著性差异( P < 0.05)。

    Figure  3.  The effects of biochar dosage on soil basal respiration (SBR)

    图  4  生物炭用量对土壤外源葡萄糖呼吸的影响

    图中CK、T10、T20、T40和T80分别表示试验处理中的对照(不施生物炭)和生物炭用量(10、20、40和80 kg 666.67 m−2);不同小写英文字母表示处理间有显著性差异( P < 0.05)。a图代表外加葡萄糖后的土壤呼吸(B值)减去土壤基础呼吸(A值)的数值;b图代表外加葡萄糖和尼古丁后的土壤呼吸(C值)减去土壤基础呼吸(A值)的数值。

    Figure  4.  The effects of biochar dosage on soil respiration

    图  5  生物炭用量对土壤可矿化N量(MinN)的影响

    图中CK、T10、T20、T40和T80分别表示试验处理中的对照(不施生物炭)和生物炭用量(10、20、40和80 kg 666.67 m−2);不同大写和小写字母分别表示在土壤中添加尼古丁和不加尼古丁情况下MinN的差异情况

    Figure  5.  The effects of biochar dosage on soil mineralizable N (MinN)

    表  1  供试土壤(0 ~ 20 cm)和生物炭的基本性质

    Table  1.   Basic properties of tested soil (0 ~ 20 cm) and biochar

    材料
    Material
    pH
    有机碳
    Organic carbon
    (g kg–1
    全氮
    Total nitrogen
    (g kg–1
    铵态氮
    Ammonium nitrogen
    (mg kg–1
    硝态氮
    Nitrate nitrogen
    (mg kg–1
    有效磷
    Available phosphorus
    (mg kg1
    速效钾
    Available potassium
    (mg kg–1
    质地
    Texture
    土壤 6.33 8.87 0.79 2.3 48.6 36.5 125 中壤
    生物炭 8.35 56.90 4.25 / / 68.5 385 /
    下载: 导出CSV

    表  2  生物炭用量对土壤基本性质的影响

    Table  2.   The effects of biochar dosage on basic properties of soil

    处理
    Treatment
    含水量
    Water
    content
    (%)
    pH铵态氮
    Ammonium
    nitrogen
    (mg kg–1
    硝态氮
    Nitrate
    nitrogen
    (mg kg–1
    CK 19.7 e 6.18 d 1.6 46.0
    T10 20.2 de 6.19 d 2.0 49.2
    T20 21.2 c 6.20 cd 1.7 44.7
    T40 21.5 bc 6.28 bc 1.4 49.8
    T80 22.5 a 6.38 a 1.4 51.4
      注:表中不同小写英文字母表示处理间有显著性差异(P < 0.05);无字母的列表示处理间无显著性差异。
    下载: 导出CSV

    表  3  生物炭用量对土壤微生物量碳氮及相关指标的影响

    Table  3.   The effects of biochar dosage on soil microbial biomass carbon and nitrogen and related parameters

    处理
    Treatment
    微生物量碳
    MBC
    (mg kg–1)
    微生物量氮
    MBN
    (mg kg–1)
    水溶性有机碳
    DOC
    (mg kg–1)
    水溶性有机氮
    DON
    (mg kg–1)
    热水浸提有机氮
    HWON
    (mg kg–1)
    6 M 盐酸水解氮
    a-ON
    (mg kg–1)
    CK 452.4 100.2 149.7 24.0 ab 87.3 d 1170 b
    T10 464.4 108.2 149.2 17.0 b 94.8 cd 1243 b
    T20 470.5 109.9 142.0 25.4 ab 113.1 bc 1353 a
    T40 525.0 121.4 165.6 25.4 ab 125.9 b 1275 ab
    T80 485.6 129.8 197.3 27.7 a 193.2 a 1184 b
      注:不同小写字母的处理间有显著性差异( P < 0.05);无字母的列表示处理间无显著性差异。
    下载: 导出CSV

    表  4  生物炭用量对土壤微生物活性的影响

    Table  4.   The effects of biochar dosage on soil microbial activity

    处理
    Treatment
    微生物呼吸熵/qCO2
    Microbial respiration entropy
    (μg mg h–1)
    微生物FDA水解酶活性熵/qFDA
    Activity entropy of microbial FDA
    (ug mg–1)
    微生物N矿化熵/qMinN
    Entropy of microbial mineralization
    (μg mg–1
    CK 10.27 ± 1.30 c 0.34 ± 0.06 a 30.40 ± 3.18 b
    T10 11.71 ± 0.96 bc 0.28 ± 0.06 ab 33.73 ± 3.01 ab
    T20 13.67 ± 2.57 b 0.30 ± 0.06 a 37.57 ± 10.32 ab
    T40 13.07 ± 1.08 bc 0.20 ± 0.05 bc 40.20 ± 3.90 a
    T80 19.73 ± 1.29 a 0.15 ± 0.03 c 1.33 ± 0.80 c
      注:表中CK、T10、T20、T40和T80分别表示试验处理中的对照(不施生物炭)和生物炭用量(每 667 m2用量10、20、40和80 kg);不同小写英文字母表示处理间有显著性差异( P < 0.05)。
    下载: 导出CSV

    表  5  生物炭用量对尼古丁效应的影响

    Table  5.   The effects of biochar dosage on nicotine effects

    处理
    Treatment
    Δ(CO2−G)
    (mg kg–1
    Δ(MinN)
    (mg kg–1
    Δ(qCO2−G)
    (μg mg h–1
    Δ(qMinN)
    (μg mg h–1
    CK +75.9 +14.6 +7.1 +32.6
    T10 −28.1 +12.1 −2.6 +26.0
    T20 −30.1 +9.9 −2.7 +20.8
    T40 −31.4 +6.6 −2.6 +12.9
    T80 −41.6 +3.1 −3.5 +6.6
      注:表中CK、T10、T20、T40和T80分别表示试验处理中的对照(不施生物炭)和生物炭用量(每667 m2用量10、20、40和80 kg);表中Δ表示加入尼古丁后数值减去未加入尼古丁的数值的差值;CO2−G表示土壤加入葡萄糖后的CO2呼吸量;MinN表示可矿化氮量;qCO2-G表示土壤加入葡萄糖后微生物呼吸熵;qMinN表示微生物氮矿化熵。
    下载: 导出CSV
  • [1] 肖战杰, 肖佳冰, 李 莉, 等. 不同生物炭施用量对烤烟中性致香成分与评吸质量的影响[J]. 江西农业学报, 2015, 27(12): 69 − 73. doi: 10.3969/j.issn.1001-8581.2015.12.016
    [2] 张嘉炜, 杨永霞, 冯小虎, 等. 添加生物炭对烤烟碳氮代谢的影响[J]. 江西农业学报, 2016, 28(3): 1 − 6. doi: 10.3969/j.issn.1001-8581.2016.03.001
    [3] 牛政洋, 闫 伸, 郭青青, 等. 生物炭对两种典型植烟土壤养分、碳库及烤烟产质量的影响[J]. 土壤通报, 2017, 48(1): 155 − 161.
    [4] 王晓强, 许跃奇, 何晓冰, 等. 减氮配施生物炭基肥对豫中烤烟产质量的影响[J]. 贵州农业科学, 2019, 47(2): 32 − 36. doi: 10.3969/j.issn.1001-3601.2019.02.009
    [5] 坤 汪, 魏跃伟, 姬小明, 等. 生物炭基肥与哈茨木霉菌剂配施对烤烟和植烟土壤质量的影响[J]. 作物杂志, 2021, (3): 106 − 113.
    [6] 山 陈, 龙世平, 崔新卫, 等. 施用稻壳生物炭对土壤养分及烤烟生长的影响[J]. 作物研究, 2016, 30(2): 142 − 148.
    [7] 快 代, 计思贵, 张立猛, 等. 生物炭对云南典型植烟土壤持水性及烤烟产量的影响[J]. 中国土壤与肥料, 2017, (4): 44 − 51. doi: 10.11838/sfsc.20170407
    [8] 吴嘉楠, 彭桂新, 杨永锋, 等. 生物炭与氮肥配施对土壤生物特性和烤烟氮素吸收的影响[J]. 中国烟草学报, 2018, 24(3): 53 − 61. doi: 10.16472/j.chinatobacco.2017.323
    [9] 陈泽斌, 高 熹, 王定斌, 等. 生物炭不同施用量对烟草根际土壤微生物多样性的影响[J]. 华北农学报, 2018, 33(1): 224 − 232. doi: 10.7668/hbnxb.2018.01.032
    [10] 张广雨, 胡志明, 褚德朋, 等. 生物炭对根际土壤微生态的调控及对烟草青枯病的防控作用[J]. 中国烟草学报, 2020, 26(6): 81 − 88.
    [11] 胡瑞文, 刘勇军, 周清明, 等. 生物炭对烤烟根际土壤微生物群落碳代谢的影响[J]. 中国农业科技导报, 2018, 20(9): 49 − 56.
    [12] 龚丝雨, 聂亚平, 张启明, 等. 增施生物炭对烤烟成熟期根际土壤酶活性的影响[J]. 江西农业学报, 2017, 29(10): 54 − 57.
    [13] 李亚森, 丁松爽, 殷全玉, 等. 多年施用生物炭对河南烤烟种植区土壤呼吸的影响[J]. 环境科学, 2019, 40(2): 915 − 923. doi: 10.13227/j.hjkx.201805157
    [14] Green V S, Stott D E, Diack M. Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples[J]. Soil biology and biochemistry, 2006, 38(4): 693 − 701. doi: 10.1016/j.soilbio.2005.06.020
    [15] Adam G, Duncan H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils[J]. Soil biology and biochemistry, 2001, 33(7-8): 943 − 951. doi: 10.1016/S0038-0717(00)00244-3
    [16] Bera T, Collins H, Alva A, et al. Biochar and manure effluent effects on soil biochemical properties under corn production[J]. Applied soil ecology, 2016, 107: 360 − 367. doi: 10.1016/j.apsoil.2016.07.011
    [17] Kocsis T, Kotroczó Z, Kardos L, et al. Optimization of increasing biochar doses with soil–plant–microbial functioning and nutrient uptake of maize[J]. Environmental Technology & Innovation, 2020, 20: 101191.
    [18] Khadem A, Raiesi F, Besharati H, et al. The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils[J]. Biochar, 2021, 3(1): 105 − 116. doi: 10.1007/s42773-020-00076-w
    [19] Chintala R, Schumacher T E, Kumar S, et al Molecular characterization of biochars and their influence on microbiological properties of soil[J]. Journal of Hazardous Materials, 2014, 279: 244 − 256. doi: 10.1016/j.jhazmat.2014.06.074
    [20] 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4): 1110 − 1118.
    [21] Lévesque V, Rochette P, Hogue R, et al. Greenhouse gas emissions and soil bacterial community as affected by biochar amendments after periodic mineral fertilizer applications[J]. Biology and Fertility of Soils, 2020, 56(7): 907 − 925. doi: 10.1007/s00374-020-01470-z
    [22] Benbi D K, Dar R A, Toor A. Improving soil organic carbon and microbial functionality through different rice straw management approaches in rice–wheat cropping sequence[J]. Biomass Conversion and Biorefinery, 2021: 1 − 11.
    [23] Dominchin M F, Verdenelli R A, Berger M G, et al. Impact of N-fertilization and peanut shell biochar on soil microbial community structure and enzyme activities in a Typic Haplustoll under different management practices[J]. European Journal of Soil Biology, 2021, 104: 103298. doi: 10.1016/j.ejsobi.2021.103298
    [24] Lebrun M, Miard F, Van Poucke R, et al. Effect of fertilization, carbon‐based material, and redmud amendments on the bacterial activity and diversity of a metal (loid) contaminated mining soil[J]. Land Degradation & Development, 2021, 32(8): 2618 − 2628.
    [25] Manirakiza E, Ziadi N, Hamel C, et al. Soil microbial community dynamics after co-application of biochar and paper mill biosolids[J]. Applied soil ecology, 2021, 165: 103960. doi: 10.1016/j.apsoil.2021.103960
    [26] Anderson T H, Domsch K H. Soil microbial biomass: the eco-physiological approach[J]. Soil biology and biochemistry, 2010, 42(12): 2039 − 2043. doi: 10.1016/j.soilbio.2010.06.026
    [27] Shitan N, Morita M, Yazaki K. Identification of a nicotine transporter in leaf vacuoles of Nicotiana tabacum[J]. Plant signaling & behavior, 2009, 4(6): 530 − 532.
    [28] Ikka T, Yamashita H, Kurita I, et al. Quantitative validation of nicotine production in tea (Camellia sinensis L.)[J]. PloS one, 2018, 13(4): e0195422. doi: 10.1371/journal.pone.0195422
    [29] Lisuma J B, Mbega E R, Ndakidemi P A. Influence of nicotine released in soils to the growth of subsequent maize crop, soil bacteria and fungi[J]. Int J Agric Biol, 2019, 22: 1 − 12.
    [30] Adediran J, Mnkeni P, Mafu N, et al. Changes in chemical properties and temperature during the composting of tobacco waste with other organic materials, and effects of resulting composts on lettuce (Lactuca sativa L.) and spinach (Spinacea oleracea L.)[J]. Biological agriculture & horticulture, 2004, 22(2): 101 − 119.
    [31] Moula M, Hossain M, Farazi M, et al. Effects of consecutive two years tobacco cultivation on soil fertility status at Bheramara Upazilla in Kushtia District[J]. J Rice Res, 2018, 6: 190.
    [32] Lisuma J B, Mbega E R, Ndakidemi P A. Dynamics of nicotine across the soil–tobacco plant interface is dependent on agro-ecology, nitrogen source, and rooting depth[J]. Rhizosphere, 2019, 12: 100175. doi: 10.1016/j.rhisph.2019.100175
    [33] Wu J, Joergensen R, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil biology & biochemistry, 1990, 22(8): 1167 − 1169.
    [34] Brookes P, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil biology and biochemistry, 1985, 17(6): 837 − 842. doi: 10.1016/0038-0717(85)90144-0
    [35] 鲍士旦. 土壤农化分析 [M]. 北京, 中国农业出版社, 2013.
    [36] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota–a review[J]. Soil biology and biochemistry, 2011, 43(9): 1812 − 1836. doi: 10.1016/j.soilbio.2011.04.022
    [37] Zhou H, Zhang D, Wang P, et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis[J]. Agriculture, Ecosystems & Environment, 2017, 239: 80 − 89.
    [38] Palansooriya K N, Wong J T F, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review[J]. Biochar, 2019, 1(1): 3 − 22. doi: 10.1007/s42773-019-00009-2
    [39] Bruun E W, Hauggaard-Nielsen H, Ibrahim N, et al. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil[J]. Biomass and Bioenergy, 2011, 35(3): 1182 − 1189. doi: 10.1016/j.biombioe.2010.12.008
    [40] Liu S, Zhang Y, Zong Y, et al. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis[J]. Gcb Bioenergy, 2016, 8(2): 392 − 406. doi: 10.1111/gcbb.12265
    [41] Pokharel P, Ma Z, Chang S X. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: a global meta-analysis[J]. Biochar, 2020, 2(1): 65 − 79. doi: 10.1007/s42773-020-00039-1
    [42] Das P, Pal R, Chowdhury A. Effect of novaluron on microbial biomass, respiration, and fluorescein diacetate-hydrolyzing activity in tropical soils[J]. Biology and Fertility of Soils, 2007, 44(2): 387 − 391. doi: 10.1007/s00374-007-0219-5
    [43] Podio N S, Guzman C A, Meriles J M. Microbial community structure in a silty clay loam soil after fumigation with three broad spectrum fungicides[J]. Journal of Environmental Science and Health Part B, 2008, 43(4): 333 − 340. doi: 10.1080/03601230801941675
    [44] Jiang J, Wang Y, Yu D, et al. Comparative evaluation of biochar, pelelith, and garbage enzyme on nitrogenase and nitrogen-fixing bacteria during the composting of sewage sludge[J]. Bioresource Technology, 2021, 333: 125165. doi: 10.1016/j.biortech.2021.125165
    [45] Thirukkumaran C M, Parkinson D. Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers[J]. Soil biology and biochemistry, 2000, 32(1): 59 − 66. doi: 10.1016/S0038-0717(99)00129-7
    [46] Pietikäinen J, Kiikkilä O, Fritze H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000, 89(2): 231 − 242. doi: 10.1034/j.1600-0706.2000.890203.x
    [47] Ye J, Joseph S D, Ji M, et al. Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars[J]. The ISME journal, 2017, 11(5): 1087 − 1101. doi: 10.1038/ismej.2016.187
    [48] Dempster D, Gleeson D, Solaiman Z i, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant and Soil, 2012, 354(1): 311 − 324.
    [49] Kelly C N, Calderón F C, Acosta-MartÍnez V, et al. Switchgrass biochar effects on plant biomass and microbial dynamics in two soils from different regions[J]. Pedosphere, 2015, 25(3): 329 − 342. doi: 10.1016/S1002-0160(15)30001-1
    [50] Agyarko-Mintah E, Cowie A, Van Zwieten L, et al. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting[J]. Waste management, 2017, 61: 129 − 137. doi: 10.1016/j.wasman.2016.12.009
    [51] Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil biology and biochemistry, 2005, 37(5): 937 − 944. doi: 10.1016/j.soilbio.2004.09.014
    [52] Steppuhn A, Gase K, Krock B, et al. Nicotine's defensive function in nature[J]. PLoS biology, 2004, 2(8): e217. doi: 10.1371/journal.pbio.0020217
    [53] Shoji T, Ogawa T, Hashimoto T. Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes[J]. Plant and cell physiology, 2008, 49(7): 1003 − 1012. doi: 10.1093/pcp/pcn077
    [54] Chen C, Li X, Yang J, et al. Isolation of nicotine-degrading bacterium Pseudomonas sp. Nic22, and its potential application in tobacco processing[J]. International Biodeterioration & Biodegradation, 2008, 62(3): 226 − 231.
    [55] Qiu J, Zhang Y, Zhao L, et al. Isolation and characterization of the cotinine-degrading bacterium Nocardioides sp. Strain JQ2195[J]. Journal of Hazardous Materials, 2018, 353: 158 − 165. doi: 10.1016/j.jhazmat.2018.04.003
    [56] Hu C, Zhao S, Li K, et al. Microbial degradation of nicotinamide by a strain Alcaligenes sp. P156[J]. Scientific reports, 2019, 9(1): 1 − 11. doi: 10.1038/s41598-018-37186-2
    [57] Lisuma J B, Mbega E R, Ndakidemi P A. Nicotine release at the tobacco rhizosphere and their adsorption capacities in different soil textures[J]. Rhizosphere, 2020, 15: 100210. doi: 10.1016/j.rhisph.2020.100210
    [58] Ballaré C L. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals[J]. Trends in plant science, 2011, 16(5): 249 − 257. doi: 10.1016/j.tplants.2010.12.001
    [59] Niu J, Chao J, Xiao Y, et al. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate[J]. Journal of Basic Microbiology, 2017, 57(1): 3 − 11. doi: 10.1002/jobm.201600222
    [60] Mohammad A, Amin A, Naushad M, et al. Nicotinic acid adsorption thermodynamics study on carboxymethyl cellulose Ce (IV) molybdophosphate composite cation-exchanger[J]. Journal of thermal analysis and calorimetry, 2013, 111(1): 831 − 838. doi: 10.1007/s10973-011-2169-2
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  33
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 录用日期:  2022-07-23
  • 修回日期:  2022-07-18
  • 网络出版日期:  2023-02-02
  • 刊出日期:  2023-02-06

目录

    /

    返回文章
    返回