留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

15N-氨基糖探针技术新用法:区分和量化土壤真菌和细菌固持无机氮速率

李晓波 张旭东 马倩倩 何红波

李晓波, 张旭东, 马倩倩, 何红波. 15N-氨基糖探针技术新用法:区分和量化土壤真菌和细菌固持无机氮速率[J]. 土壤通报, 2021, 52(6): 1473 − 1478 doi: 10.19336/j.cnki.trtb.2021090704
引用本文: 李晓波, 张旭东, 马倩倩, 何红波. 15N-氨基糖探针技术新用法:区分和量化土壤真菌和细菌固持无机氮速率[J]. 土壤通报, 2021, 52(6): 1473 − 1478 doi: 10.19336/j.cnki.trtb.2021090704
LI Xiao-bo, ZHANG Xu-dong, MA Qian-qian, HE Hong-bo. Disentangling Immobilization of Inorganic Nitrogen by Fungi and Bacteria in Soil with Adapting a Novel Amino Sugar-based Stable Isotope Probing Approach[J]. Chinese Journal of Soil Science, 2021, 52(6): 1473 − 1478 doi: 10.19336/j.cnki.trtb.2021090704
Citation: LI Xiao-bo, ZHANG Xu-dong, MA Qian-qian, HE Hong-bo. Disentangling Immobilization of Inorganic Nitrogen by Fungi and Bacteria in Soil with Adapting a Novel Amino Sugar-based Stable Isotope Probing Approach[J]. Chinese Journal of Soil Science, 2021, 52(6): 1473 − 1478 doi: 10.19336/j.cnki.trtb.2021090704

15N-氨基糖探针技术新用法:区分和量化土壤真菌和细菌固持无机氮速率

doi: 10.19336/j.cnki.trtb.2021090704
基金项目: 国家自然科学基金项目(41977097, 31600392),广东省自然科学基金(2019A1515012067)。
详细信息
    作者简介:

    李晓波(1984−),男,河南焦作,博士,副教授,主要从事氮素循环及其环境效应研究,E-mail: li.xb.sun@gmail.com, li.xb.sun@gmail.com

    通讯作者:

    E-mail: maqianqian@scbg.ac.cn

    hehongbo@iae.ac.cn

  • 中图分类号: S154

Disentangling Immobilization of Inorganic Nitrogen by Fungi and Bacteria in Soil with Adapting a Novel Amino Sugar-based Stable Isotope Probing Approach

  • 摘要: 土壤微生物对无机氮的固持作用是构成土壤保氮机制的重要组成。作为土壤微生物的两大主要类群,真菌和细菌是微生物固持无机氮作用的主要参与者。然而,由于土壤微生物的高度复杂多变性,如何有效区分和量化土壤中真菌和细菌各自对无机氮的固持作用是个难题。针对该问题,本文采用“氨基糖稳定同位素探针(AS-SIP)”技术来区分和表征土壤中真菌、细菌各自对无机氮的固持速率。基于此进一步揭示了农业利用和外源碳输入分别对土壤真菌、细菌各自固持硝态氮作用的影响及原因,构建了土壤中真菌、细菌各自固持无机氮实际速率的估算模型,为区分和量化土壤中真菌、细菌各自对无机氮的实际固持速率提供了更为可信的新方法。本文介绍了AS-SIP 技术原理、主要技术优势、应用案例、不足之处以及改进对策,以期推进该方法的应用和发展。
  • 图  1  农业利用降低土壤微生物固持硝态氮功能的机制[21]

    短期培养内新合成真菌、细菌来源氨基糖(15N-GlcN和15N-MurN)各自的累积速率分别表征土壤真菌、细菌固持NO3的速率。

    Figure  1.  Mechanisms of decreasing soil microbial nitrate immobilization in agricultural land-use [21]

      Note: The cumulative amounts of newly formed 15N-GluN and 15N-Mur at the end of incubation were used as proxies of fungal and bacterial NO3 immobilization rates.

    图  2  植物残体添加增加土壤微生物固持硝态氮功能的作用机制[24]

    Figure  2.  Mechanisms of plant residue incorporation improving soil microbial nitrate immobilization [24]

  • [1] Huddell A M, Galford G L, Tully K L, et al. Meta-analysis on the potential for increasing nitrogen losses from intensifying tropical agriculture[J]. Global Change Biology, 2020, 26(3): 1668 − 1680. doi: 10.1111/gcb.14951
    [2] Yang S, Wu H, Dong Y, et al. Deep nitrate accumulation in a highly weathered subtropical critical zone depends on the regolith structure and planting year[J]. Environmental Science & Technology, 2020, 54(21): 13739 − 13747.
    [3] Zhou J, Gu B, Schlesinger W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific Reports, 2016, 6: 25088. doi: 10.1038/srep25088
    [4] Zhu X, Fu W, Kong X, et al. Nitrate accumulation in the soil profile is the main fate of surplus nitrogen after land-use change from cereal cultivation to apple orchards on the loess plateau[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107574.
    [5] 蔡祖聪, 赵 维. 土地利用方式对湿润亚热带土壤硝化作用的影响[J]. 土壤学报, 2009, 46(5): 795 − 801. doi: 10.3321/j.issn:0564-3929.2009.05.006
    [6] 巨晓棠, 张福锁. 中国北方土壤硝态氮的累积及其对环境的影响[J]. 生态环境, 2003, (1): 24 − 28.
    [7] 吴萍萍, 刘金剑, 周 毅, 等. 长期不同施肥制度对红壤稻田肥料利用率的影响[J]. 植物营养与肥料学报, 2008, 14(2): 277 − 283. doi: 10.3321/j.issn:1008-505X.2008.02.012
    [8] Davidson E A, Hart S C, Firestone M K. Internal cycling of nitrate in soils of a mature coniferous forest[J]. Ecology, 1992, 73(4): 1148 − 1156. doi: 10.2307/1940665
    [9] Stark J M, Hart S C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests[J]. Nature, 1997, 385(6611): 61 − 64. doi: 10.1038/385061a0
    [10] Zhang J, Zhu T, Meng T, et al. Agricultural land use affects nitrate production and conservation in humid subtropical soils in china[J]. Soil Biology and Biochemistry, 2013, 62: 107 − 114.
    [11] Zhang W, Zhang X, Bai E, et al. The strategy of microbial utilization of the deposited n in a temperate forest soil[J]. Biology and Fertility of Soils, 2019: 1 − 9.
    [12] Zhu T, Zhang J, Meng T, et al. Tea plantation destroys soil retention of NO3 and increases N2O emissions in subtropical china[J]. Soil Biology and Biochemistry, 2014, 73(0): 106 − 114.
    [13] 程 谊, 黄 蓉, 余云飞, 等. 应重视硝态氮同化过程在降低土壤硝酸盐浓度中的作用[J]. 土壤学报, 2017, 54(6): 1326 − 1331.
    [14] Bottomley P J, Taylor A E, Myrold D D. A consideration of the relative contributions of different microbial subpopulations to the soil N cycle[J]. Frontiers in Microbiology, 2012, 3: 373 − 373.
    [15] Boyle S A, Yarwood R R, Bottomley P J, et al. Bacterial and fungal contributions to soil nitrogen cycling under douglas fir and red alder at two sites in oregon[J]. Soil Biology and Biochemistry, 2008, 40(2): 443 − 451. doi: 10.1016/j.soilbio.2007.09.007
    [16] Myrold D D, Posavatz N R. Potential importance of bacteria and fungi in nitrate assimilation in soil[J]. Soil Biology and Biochemistry, 2007, 39(7): 1737 − 1743. doi: 10.1016/j.soilbio.2007.01.033
    [17] Lauber C L, Strickland M S, Bradford M A, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 2008, 40(9): 2407 − 2415. doi: 10.1016/j.soilbio.2008.05.021
    [18] Rousk J, Brookes P C, Bååth E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘park grass’ uk grassland experiment[J]. Fems Microbiology Ecology, 2011, 76(1): 89 − 99. doi: 10.1111/j.1574-6941.2010.01032.x
    [19] Six J, Frey S D, Thiet R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2): 555 − 569. doi: 10.2136/sssaj2004.0347
    [20] Waring B G, Averill C, Hawkes C V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models[J]. Ecology Letters, 2013, 16(7): 887 − 894. doi: 10.1111/ele.12125
    [21] Li X, He H, Zhang X, et al. Distinct responses of soil fungal and bacterial nitrate immobilization to land conversion from forest to agriculture[J]. Soil Biology and Biochemistry, 2019, 134: 81 − 89. doi: 10.1016/j.soilbio.2019.03.023
    [22] Anderson J P E, Domsch K H. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils[J]. Canadian Journal of Microbiology, 1975, 21(3): 314 − 322. doi: 10.1139/m75-045
    [23] Li X, He H, Zhang X, et al. Calculation of fungal and bacterial inorganic nitrogen immobilization rates in soil[J]. Soil Biology and Biochemistry, 2021, 153: 108114. doi: 10.1016/j.soilbio.2020.108114
    [24] Li X, Li Z, Zhang X, et al. Disentangling immobilization of nitrate by fungi and bacteria in soil to plant residue amendment[J]. Geoderma, 2020, 374: 114450. doi: 10.1016/j.geoderma.2020.114450
    [25] Methods using amino sugars as markers for microbial residues in soil//Amelung W Assessment methods for soil carbon. Lewis Publishers Boca Raton, 2001: 233-272
    [26] Stevenson F J. Isolation and identification of amino sugars in soil[J]. Soil Science Society of America Journal, 1983, 47: 61 − 65. doi: 10.2136/sssaj1983.03615995004700010012x
    [27] Chemistry and distribution of amino sugars in soils and soil organisms//Parsons J W Soil biochemistry. New York: Marcel Dekker, 1981: 197-227
    [28] Amelung W, Zhang X, Zech W, et al. Amino sugars in native grassland soils along a climosequence in north america[J]. Soil Science Society of America Journal, 1999, 63(1): 86 − 92. doi: 10.2136/sssaj1999.03615995006300010014x
    [29] Zhang X, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils[J]. Soil Biology and Biochemistry, 1996, 28(9): 1201 − 1206. doi: 10.1016/0038-0717(96)00117-4
    [30] Zhang X, Amelung W, Zech W. Can amino sugars serve as indicators of climate variations and land use on soil organic matter[J]? Advances in Geoecology, 1998, 31: 225-230
    [31] He H, Xie H, Zhang X. A novel GC/MS technique to assess 15N and 13C incorporation into soil amino sugars[J]. Soil Biology and Biochemistry, 2006, 38(5): 1083 − 1091. doi: 10.1016/j.soilbio.2005.09.007
    [32] He H, Zhang W, Zhang X, et al. Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation[J]. Soil Biology and Biochemistry, 2011, 43(6): 1155 − 1161. doi: 10.1016/j.soilbio.2011.02.002
    [33] Liang C, Balser T C. Mass spectrometric characterization of amino sugar aldononitrile acetate derivatives used for isotope enrichment assessment of microbial residues[J]. Soil Biology and Biochemistry, 2010, 42(6): 904 − 909. doi: 10.1016/j.soilbio.2010.02.006
    [34] Reay M K, Knowles T D J, Jones D L, et al. Development of alditol acetate derivatives for the determination of 15N-enriched amino sugars by gas chromatography–combustion–isotope ratio mass spectrometry[J]. Analytical Chemistry, 2019, 91(5): 3397 − 3404. doi: 10.1021/acs.analchem.8b04838
    [35] 李晓波, 张 威, 田秋香, 等. 尿素向氨基糖的转化以及对土壤氨基糖库动态的影响[J]. 土壤学报, 2011, 48(6): 1189 − 1195. doi: 10.11766/trxb201101180027
    [36] Derrien D, Amelung W. Computing the mean residence time of soil carbon fractions using stable isotopes: Impacts of the model framework[J]. European Journal of Soil Science, 2011, 62(2): 237 − 252. doi: 10.1111/j.1365-2389.2010.01333.x
    [37] Glaser B, Millar N, Blum H. Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO2[J]. Global Change Biology, 2006, 12(8): 1521 − 1531. doi: 10.1111/j.1365-2486.2006.01186.x
    [38] Liu X, Hu G, He H, et al. Linking microbial immobilization of fertilizer nitrogen to in situ turnover of soil microbial residues in an agro-ecosystem[J]. Agriculture, Ecosystems and Environment, 2016, 229: 40 − 47. doi: 10.1016/j.agee.2016.05.019
    [39] Glaser B, Turrión M a-B, Alef K. Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis[J]. Soil Biology and Biochemistry, 2004, 36(3): 399 − 407. doi: 10.1016/j.soilbio.2003.10.013
    [40] Gunina A, Dippold M, Glaser B, et al. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers[J]. Biogeosciences, 2017, 14(2): 271 − 283. doi: 10.5194/bg-14-271-2017
    [41] Cao Y, He Z, Zhu T, et al. Organic-C quality as a key driver of microbial nitrogen immobilization in soil: A meta-analysis[J]. Geoderma, 2021, 383: 114784. doi: 10.1016/j.geoderma.2020.114784
    [42] Chen Z, Zhang H, Tu X, et al. Characteristics of organic material inputs affect soil microbial NO3- immobilization rates calculated using different methods[J]. European Journal of Soil Science, 2020, n/a(n/a)
    [43] Cheng Y, Wang J, Wang J, et al. The quality and quantity of exogenous organic carbon input control microbial NO3 immobilization: A meta-analysis[J]. Soil Biology and Biochemistry, 2017, 115(Supplement C): 357 − 363.
    [44] Appuhn A, Joergensen R G. Microbial colonisation of roots as a function of plant species[J]. Soil Biology and Biochemistry, 2006, 38(5): 1040 − 1051. doi: 10.1016/j.soilbio.2005.09.002
    [45] Engelking B, Flessa H, Joergensen R G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil[J]. Soil Biology and Biochemistry, 2007, 39(8): 2111 − 2118. doi: 10.1016/j.soilbio.2007.03.020
    [46] Neufeld J D, Dumont M G, Vohra J, et al. Methodological considerations for the use of stable isotope probing in microbial ecology[J]. Microbial Ecology, 2007, 53(3): 435 − 442. doi: 10.1007/s00248-006-9125-x
    [47] Rousk J, Bååth E. Fungal and bacterial growth in soil with plant materials of different C/N ratios[J]. Fems Microbiology Ecology, 2007, 62(3): 258 − 267. doi: 10.1111/j.1574-6941.2007.00398.x
  • 加载中
图(2)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  352
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 修回日期:  2021-09-23
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2021-12-08

目录

    /

    返回文章
    返回