留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

添加螯合剂诱导-栽培红叶菾菜(Beta vulgaris var. cicla L.)修复铅和镉污染土壤效果的研究

马叶 赵国梁 王晓凤 成杰民

马 叶, 赵国梁, 王晓凤, 成杰民. 添加螯合剂诱导-栽培红叶菾菜( Beta vulgaris var. cicla L.)修复铅和镉污染土壤效果的研究[J]. 土壤通报, 2021, 52(2): 416 − 424 doi: 10.19336/j.cnki.trtb.2020062801
引用本文: 马 叶, 赵国梁, 王晓凤, 成杰民. 添加螯合剂诱导-栽培红叶菾菜( Beta vulgaris var. cicla L.)修复铅和镉污染土壤效果的研究[J]. 土壤通报, 2021, 52(2): 416 − 424 doi: 10.19336/j.cnki.trtb.2020062801
MA Ye, ZHAO Guo-liang, WANG Xiao-feng, CHENG Jie-min. Remediation of Lead and Cadmium Contaminated Soil with Chelate-Induced- Beta Vulgaris Var. Cicla L doi: 10.19336/j.cnki.trtb.2020062801
Citation: MA Ye, ZHAO Guo-liang, WANG Xiao-feng, CHENG Jie-min. Remediation of Lead and Cadmium Contaminated Soil with Chelate-Induced- Beta Vulgaris Var. Cicla L doi: 10.19336/j.cnki.trtb.2020062801

添加螯合剂诱导-栽培红叶菾菜(Beta vulgaris var. cicla L.)修复铅和镉污染土壤效果的研究

doi: 10.19336/j.cnki.trtb.2020062801
基金项目: 国家重点研究开发计划(No.2018YFD0800106-04和No.2018YFF0213404)资助
详细信息
    作者简介:

    马叶:马 叶(1996−),女,山东济南人,硕士研究生,主要从事土壤污染修复研究。Email: maye1996668@163.com

    通讯作者:

    Email: jmcheng2002@hotmail.com

  • 中图分类号: S147.2

Remediation of Lead and Cadmium Contaminated Soil with Chelate-Induced-Beta Vulgaris Var. Cicla L.

  • 摘要: 以雄安新区安新县重金属污染农田土壤为供试土壤,以Cd超积累植物红叶菾菜(Beta vulgaris var. cicla L.)为供试植物,设置不同浓度EDTA和柠檬酸(0,2.5,5,7.5,10 mmol kg−1)处理进行盆栽试验,探究螯合诱导-红叶菾菜修复Cd、Pb污染土壤的可行性。结果表明:(1)与对照相比,添加EDTA螯合剂使红叶菾菜生长及生物量均受到抑制,一定浓度柠檬酸处理能显著促进植物生长,5 mmol kg−1柠檬酸处理对植物株高、茎粗及生物量与对照相比的上升比例分别为4.52%、44.07%和50%;(2)添加EDTA螯合剂后土壤中Cd、Pb有效态含量相比对照分别提高了108.61% ~ 235.39%、67.98% ~ 224.16%,柠檬酸处理后土壤Cd、Pb有效态含量最大提高了180.07%、186.01%,EDTA对土壤重金属的活化效率显著高于柠檬酸;(3)通过对红叶菾菜地上部Cd、Pb含量及富集系数比较发现,EDTA更能促进红叶菾菜对Pb的吸收,柠檬酸更能促进红叶菾菜对Cd的吸收;(4)螯合剂处理后土壤中铵态氮、有效磷、速效钾含量显著增加。就本文试验条件、供试材料而言,螯合诱导-红叶菾菜修复铅镉复合污染土壤是可行的。
  • 图  1  添加螯合剂对植物株高的影响

    CK代表对照(不添加螯合剂),E代表添加EDTA,CA代表添加柠檬酸,数字代表添加浓度(mmol kg−1),a代表CA处理组,b代表EDTA处理组,下同

    Figure  1.  Effects of different concentrations of chelating agents on plant height

    图  2  添加螯合剂对植物茎粗的影响

    Figure  2.  Effects of different concentrations of chelating agents on plant stem diameter

    图  3  添加螯合剂对土壤中有效态Cd含量的影响

    Figure  3.  Effects of different concentrations of chelating agents on the concentration of soil available Cd

    图  4  添加螯合剂对土壤中有效态Pb含量的影响

    Figure  4.  Effects of different concentrations of chelating agents on the concentration of soil available Pb

    图  5  施加螯合剂对红叶菾菜地上部吸收Cd、Pb的影响

    Figure  5.  Effects of chelating agents on Cd and Pb concentrations of aboveground plants

    图  6  施加螯合剂对植物重金属富集系数的影响

    Figure  6.  Effects of chelating agents on enrichment coefficients of heavy metal in plants

    图  7  施加螯合剂对土壤pH的影响

    Figure  7.  Effects of chelating agents on soil pH values

    表  1  供试土壤基本理化性质

    Table  1.   Physical and chemical properties of soil

    pH < 0.002 mm粘粒
    Percentage of <
    0.002 mm clay(%)
    有机质
    Organic matter
    (g·kg−1
    铵态氮
    Ammonium nitrogen
    (mg·kg−1
    有效磷
    Available phosphorus
    (mg·kg−1
    速效钾
    Available potassium
    (mg·kg−1
    重金属(mg·kg−1
    Pollutant content
    总铅
    Total lead
    总镉
    Total cadmium
    有效态铅
    Available lead
    有效态镉
    Available cadmium
    8.55 30.33 14.74 17.19 33.04 131.78 462.00 3.83 102.00 0.88
    下载: 导出CSV

    表  2  试验处理

    Table  2.   Treatments of the experiment

    处理
    Treatment
    螯合剂
    Chelant
    浓度(mmol kg−1
    Concentration
    用量(g 盆−1
    Dosage
    CK 0 0
    CA2.5 CA 2.5 0.788
    CA5.0 5.0 1.575
    CA7.5 7.5 2.363
    CA10.0 10.0 3.150
    E2.5 EDTA 2.5 1.395
    E5.0 5.0 2.790
    E7.5 7.5 4.185
    E10.0 10.0 5.580
    下载: 导出CSV

    表  3  添加螯合剂对植物生物量的影响

    Table  3.   Effects of different concentrations of chelating agents on plant biomass

    处理
    Treatment
    鲜重(g 盆−1
    Fresh weight
    干重(g 盆−1
    Dry weight
    地上部
    Aboveground
    地下部
    Underground
    地上部
    Aboveground
    地下部
    Underground
    CK 12.25 ± 1.01 a 0.91 ± 0.10 a 1.16 ± 0.05 a 0.08 ± 0.01 a
    E2.5 7.66 ± 0.98 b 0.37 ± 0.02 b 0.82 ± 0.04 b 0.04 ± 0.01 b
    E5.0 6.72 ± 0.48 bc 0.29 ± 0.02 bc 0.68 ± 0.07 c 0.03 ± 0.01 bc
    E7.5 5.76 ± 0.42 c 0.20 ± 0.02 cd 0.57 ± 0.06 d 0.02 ± 0.01 bc
    E10.0 3.10 ± 0.21 d 0.18 ± 0.02 d 0.31 ± 0.02 e 0.01 ± 0.01 d
    CK 12.25 ± 1.01 cd 0.91 ± 0.10 a 1.16 ± 0.05 d 0.08 ± 0.01 c
    CA2.5 14.96 ± 0.93 ab 0.93 ± 0.22 a 1.58 ± 0.08 b 0.11 ± 0.01 ab
    CA5.0 15.91 ± 0.63 a 1.08 ± 0.05 a 1.71 ± 0.02 a 0.13 ± 0.01 a
    CA7.5 13.46 ± 0.76 bc 0.92 ± 0.04 a 1.39 ± 0.04 c 0.10 ± 0.01 bc
    CA10.0 10.79 ± 0.76 d 0.85 ± 0.04 a 1.16 ± 0.08 d 0.09 ± 0.01 bc
      注:均为平均值 ± 标准差,不同字母表示在0.05水平上差异显著,下同。
    下载: 导出CSV

    表  4  土壤有效态Cd、Pb含量与红叶菾菜植株体Cd、Pb含量的相关系数

    Table  4.   The correlation coefficients between available Cd and Pb in soil and Cd and Pb in plants

    处理
    Treatment
    植物地上部重金属浓度
    Concentration of heavy metal in plant aboveground
    DTPA-CdDTPA-Pb
    EDTA处理 0.953* 0.722
    CA处理 0.671 0.770
      注:*表示在0.05水平(双侧)上显著相关。
    下载: 导出CSV

    表  5  施用螯合剂对土壤养分形态的影响

    Table  5.   Effects of different chelating agents on soil fertility

    处理
    Treatment
    铵态氮
    Ammonium nitrogen
    有效磷
    Available phosphorus
    速效钾
    Available potassium
    含量(mg kg−1
    Content
    上升百分比(%)
    Percentage increase
    含量(mg kg−1
    Content
    上升百分比(%)
    Percentage increase
    含量(mg kg−1
    Content
    上升百分比(%)
    Percentage increase
    CK 17.73 ± 0.49 a 3.16 34.30 ± 0.04 a 3.82 136.78 ± 3.58 a 3.79
    E2.5 22.64 ± 0.19 b 31.75 44.59 ± 0.42 b 34.97 157.53 ± 8.20 b 19.54
    E5.0 24.75 ± 0.09 bc 43.99 47.34 ± 0.16 bc 43.29 163.32 ± 3.80 b 23.93
    E7.5 25.06 ± 0.16 c 45.83 48.39 ± 0.33 bc 46.46 183.40 ± 2.34 bc 39.17
    E10 26.84 ± 0.18 c 56.20 49.97 ± 0.56 c 51.24 199.04 ± 7.92 c 51.04
    CK 17.73 ± 0.49 a 3.16 34.30 ± 0.04 a 3.82 136.78 ± 3.58 a 3.79
    CA2.5 21.07 ± 0.21 b 22.57 36.17 ± 0.10 ab 9.48 142.65 ± 5.81 ab 8.25
    CA5.0 22.97 ± 0.04 b 33.63 39.13 ± 0.21 b 18.45 161.84 ± 2.20 b 22.81
    CA7.5 23.84 ± 0.02 c 38.74 44.30 ± 0.41 bc 34.08 175.21 ± 5.80 c 32.95
    CA10 24.45 ± 0.01 c 42.24 45.30 ± 0.25 c 37.11 181.45 ± 6.34 c 37.68
    下载: 导出CSV
  • [1] 全国土壤污染状况调查公报[EB/OL]. (2014-04-17). http://www.gov.cn/foot/2014-04/17/content_2661768.htm.
    [2] Solgi E, Eamaili-sari A, Riyahi-bakhtiari A, et al. Soil contamination of metals in the three industrial estates, Arak, Iran[J]. Bulletin of Environmental Contamination & Toxicology, 2012, 88(4): 634 − 638.
    [3] Arao T, Ishikawa S, Murakami M, et al. Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment, 2010, 8(3): 247 − 257. doi: 10.1007/s10333-010-0205-7
    [4] 宋 波, 张云霞, 庞 瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析[J]. 环境科学, 2018, 39(9): 4317 − 4326.
    [5] Niazi N K, Singhh B, Minasny B. Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site[J]. International Journal of Environmental Science and Technology, 2015, 12(6): 1735 − 1472.
    [6] Šajn R, Aliu M, Stafilov T, et al. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovië, Kosovo/Kosovë[J]. Journal of Geochemical Exploration, 2013, 134: 1 − 16. doi: 10.1016/j.gexplo.2013.06.018
    [7] 周 静. 重金属污染土壤修复技术的现状和展望—以江西贵溪冶炼厂周边区域土壤修复示范项目为例[J]. 世界环境, 2016, (4): 48 − 53.
    [8] 黄 林. 冶炼厂周边农田铜镉污染现状及修复效果评价[D]. 安徽农业大学, 2015.
    [9] Lee J, Sung K. Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants[J]. Ecological Engineering, 2014, 73: 386 − 394. doi: 10.1016/j.ecoleng.2014.09.053
    [10] 刘 星, 刘晓文, 吴颖欣, 等. 农用地重金属污染植物提取修复技术研究进展[J]. 环境污染与防治, 2020, 42(4): 507 − 513.
    [11] Vassil A D, Kapulink Y, Raskin I, et al. The role of EDTA in lead transport and accumulation by indian mustard[J]. Plant Physiology, 1998, 117(20): 447 − 453.
    [12] Meers E, Tack F M G, Verloo M G. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: Implications for its use soil remediation[J]. Chemosphere, 2008, 70: 358 − 363. doi: 10.1016/j.chemosphere.2007.07.044
    [13] Luo C, Shen Z, Li X. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS[J]. Chemosphere, 2005, 59: 1 − 11. doi: 10.1016/j.chemosphere.2004.09.100
    [14] Niinae M, Nishigaki K, Aoki K. Removal of Lead from Contaminated Soils with Chelating Agents[J]. Materials Transactions, 2008, 49(10): 2377 − 2382. doi: 10.2320/matertrans.M-MRA2008825
    [15] 郑志谦, 张绍玮, 吕文海, 等. 雄安新区设立的特点及驱动意义分析[J]. 现代商贸工业, 2019, 40(4): 41 − 44.
    [16] 刘佳丽, 成 凯. 雄安新区建设环境分析[J]. 合作经济与科技, 2017, (15): 8 − 10. doi: 10.3969/j.issn.1672-190X.2017.15.003
    [17] GB 15618—2018, 土壤环境质量农用地土壤污染风险管控标准(试行)[S].
    [18] 安玉琴, 裴秀坤, 金 红, 等. 河北省农田土壤重金属污染及健康风险评价[J]. 中国公共卫生, 2016, 32(9): 1235 − 1238. doi: 10.11847/zgggws2016-32-09-26
    [19] GB 2762—2017, 食品安全国家标准 食品中污染物限量[S].
    [20] Lai H Y, Chen Z S. Effects of EDTA on Solubility of Cadmium, Zinc, and Lead and Their Uptake By Rainbow Pink and Vetiver Grass[J]. Chemosphere, 2004, 55(3): 421 − 430. doi: 10.1016/j.chemosphere.2003.11.009
    [21] Marschner H, Rormheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron[J]. Plant Nutrient, 1986, 9: 695 − 713. doi: 10.1080/01904168609363475
    [22] Suthar V, Memon K S, Muhammad M. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania[J]. Environmental Monitoring Assessment, 2014, 186: 3957 − 3968. doi: 10.1007/s10661-014-3671-3
    [23] Meers E, Saifullah, Qadir M, et al. EDTA- assisted Pb phytoextraction[J]. Chemosphere, 2009, 74: 1279 − 1291. doi: 10.1016/j.chemosphere.2008.11.007
    [24] Chen Y H, Li X D, Shen Z G. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process[J]. Chemosphere, 2004, 57: 187 − 196. doi: 10.1016/j.chemosphere.2004.05.044
    [25] Grcman H, Vodnik D, Velikonja S, et al. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction[J]. Journal of Environmental Quality, 2003, 32: 500 − 506. doi: 10.2134/jeq2003.5000
    [26] 陈英旭, 林 琦, 陆 芳, 等. 有机酸对铅、镉植株危害的解毒作用研究[J]. 环境科学学报, 2000, 20(4): 467 − 472. doi: 10.3321/j.issn:0253-2468.2000.04.017
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  139
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2020-08-07
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回