留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施用改良剂对苏打盐化草甸土土壤性状及水稻产量的影响

张明聪 周伟 杜吉到 吴耀坤 张玉先

张明聪, 周 伟, 杜吉到, 吴耀坤, 张玉先. 施用改良剂对苏打盐化草甸土土壤性状及水稻产量的影响[J]. 土壤通报, 2021, 52(3): 658 − 669 doi: 10.19336/j.cnki.trtb.2020050901
引用本文: 张明聪, 周 伟, 杜吉到, 吴耀坤, 张玉先. 施用改良剂对苏打盐化草甸土土壤性状及水稻产量的影响[J]. 土壤通报, 2021, 52(3): 658 − 669 doi: 10.19336/j.cnki.trtb.2020050901
ZHANG Ming-cong, ZHOU Wei, DU Ji-dao, WU Yao-kun, ZHANG Yu-xian. The Properties of Soda Saline-Alkali Soil and Yield of Rice in Paddy Fields Added with a Soil Ameliorant[J]. Chinese Journal of Soil Science, 2021, 52(3): 658 − 669 doi: 10.19336/j.cnki.trtb.2020050901
Citation: ZHANG Ming-cong, ZHOU Wei, DU Ji-dao, WU Yao-kun, ZHANG Yu-xian. The Properties of Soda Saline-Alkali Soil and Yield of Rice in Paddy Fields Added with a Soil Ameliorant[J]. Chinese Journal of Soil Science, 2021, 52(3): 658 − 669 doi: 10.19336/j.cnki.trtb.2020050901

施用改良剂对苏打盐化草甸土土壤性状及水稻产量的影响

doi: 10.19336/j.cnki.trtb.2020050901
基金项目: 黑龙江省省属高等学校基本科研业务费科研项目(PTJH201901)、大庆市指导性科技计划项目(zd-2019-78)、黑龙江省应用技术研究与开发计划项目(GA19B101-02)、黑龙江省农垦总局重点科研计划项目(HKKY190206-1)和黑龙江八一农垦大学博士科研启动基金(XYB2014-04)资助
详细信息
    作者简介:

    张明聪(1983−),男,黑龙江省哈尔滨人,博士,副教授,主要从事盐碱土壤改良研究。E-mail: zhangmingcong@163.com

    通讯作者:

    E-mail: zyx_lxy@126.com

  • 中图分类号: S156.2

The Properties of Soda Saline-Alkali Soil and Yield of Rice in Paddy Fields Added with a Soil Ameliorant

  • 摘要: 为改良苏打盐碱土定向开发了土壤改良剂,探讨土壤改良剂的改良机制。本文用水稻栽培田间试验的方法,研究改良剂改良苏打盐化草甸土的效果及机制,并用16S rRNA基因Illumina MiSeq高通量测序技术探讨了改良剂对土壤细菌群落组成及功能多样性的影响。田间试验设常规施肥(CK)和常规施肥加改良剂(T)两个处理。与CK相比,T处理水稻产量提高124.4%(P < 0.01),土壤不同粒级水稳性团聚体数量增加、代换性钠离子含量下降,但土壤电导率上升;测序共获得286528条有效序列读数,T处理土壤OTUs6343个,较CK的7539个显著降低;T处理Chao和ACE指数显著低于CK处理,而Shannon指数高于CK对照;T处理的变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)、不动杆菌属(Acinetobacter)、沙壤土杆菌(Ramlibacter)、新鞘脂菌属(Novosphingobium)、假单胞菌属(Pseudomonas)、粉色科工委属(Cesiribacter)、贪铜菌属(Cupriavidus)和慢生根瘤菌属(Bradyrhizobium)相对丰度增加,芽单胞菌门(Gemmatimonadetes)、芽单胞菌属(Gemmatimonas)、藤黄单胞菌(Luteimonas)和溶杆菌属(Lysobacter)相对丰度降低;冗余分析结果为施用改良剂后盐化草甸土的物理性状改善,PseudomonasCupriavidusBradyrhizobium 3个属水平显著提高。挖掘和利用微生物资源有助于改良苏打盐化草甸土。
  • 图  1  盐碱改良剂改良苏打盐化草甸土效果

    Figure  1.  Effects of soil ameliorant on the improvement of soda salinized meadow soil

    图  2  土壤样品细菌的稀释曲线(相似度97%)

    图中CK1、CK2、CK3代表常规施肥处理(CK)的三次重复,CK为CK1、CK2和CK3处理OTUs数量的平均值;T1、T2和T3代表施用土壤改良剂处理(T)的三次重复,T为T1、T2和T3处理OTUs数量的平均值,下同。

    Figure  2.  Rarefaction curves of soil bacteria in different treatments(97% sequence identity)

    图  3  不同处理土壤样品的分类单元

    Figure  3.  Taxon of soil samples in different treatments

    图  4  土壤优势细菌在门和属水平上的分布(a:门;b:属)

    Figure  4.  The proportion of the dominant bacterial phyla and genera in soils(a: phylum;b: genus)

    图  5  不同处理土壤门类水平的细菌群落比较

    Figure  5.  Comparison of soil bacteria group at phylum level among different treatments

    图  6  主要细菌门类水平群落结构及分布

    a:变形菌门(Proteobacteria),b:放线菌门(Actinobacteria),c:绿弯菌门(Chloroflexi),d:酸杆菌门(Acidobacteria),e:硝化螺旋菌门(Nitrospirae),f:芽单胞菌门(Gemmatimonadetes),g:蓝藻门(cyanobacteria),h:俭菌总门(Parcubacteria

    Figure  6.  Community structure and distribution of main bacterial phyla

    图  7  属水平的优势菌群分布特征

    Figure  7.  Bacterial community structure and distribution of the Dominant bacteria at genus level

    图  8  属水平的未知菌群结构及分布

    Figure  8.  Bacterial community structure and distribution of the unclassified bacteria at genus level

    图  9  土壤优势菌属与土壤理化性质的RDA分析

    CK1、CK2、CK3为当地农民习惯施肥处理;T1、T2、T3为农民习惯施肥处理 + 盐碱土改良剂;TUp0:土壤团聚体数量;Conductv:电导率;Moisture:土壤质量含水量;Na:交换性Na;Pseudomn:假单胞菌属(Pseudomonas);Cupriavd:贪铜菌属(Cupriavidus);Bradyrhz:慢生根瘤菌属(Bradyrhizobium);Ramlibac:沙壤土杆菌(Ramlibacter);Novosphn:新鞘脂菌属(Novosphingobium);Acinetob:不动杆菌属(Acinetobacter);Sphingom:鞘脂单胞菌属(Sphingomonas);Nacardio:;Lysobact:溶杆菌属(Lysobacter);Luteimon:藤黄单胞菌(Luteimonas);Arthrobc:节杆菌属(Arthrobacter);Haliangi:嗜盐海洋粘菌属(Haliangium);Pontibac:海洋杆菌属(Pontibacter);Gemmatim:芽单胞菌属(Gemmatimonas)。

    Figure  9.  RDA analysis of environmental factors and microbial community structure

    表  1  土壤改良剂对水稻产量及产量构成的影响

    Table  1.   Effects of soil modifiers on rice yield and yield composition

    处理
    Treatment
    平方米穴数
    Hills per m2
    每穴分蘖数
    Tillers per hill
    穗粒数
    Grains per panicle
    千粒重(g)
    1000-grain weight
    结实率(%)
    Seed setting rate
    产量(t km−2
    Yield
    CK 17.1 ± 1.16 Bb 15.2 ± 1.65 Bb 69.8 ± 2.31 Bb 19.9 ± 0.02 Aa 71.9 ± 1.89 Bb 2.60 ± 0.31 Bb
    T 23.8 ± 1.34 Aa 19.8 ± 1.43 Aa 76.5 ± 2.45 Aa 20.3 ± 0.01 Aa 79.6 ± 2.17 Aa 5.83 ± 0.24 Aa
      注:同列不同字母表示达到差异显著水平,大写字母表示差异达到极显著(P < 0.01),小写字母表示差异达到显著(P < 0.05),下同。
    下载: 导出CSV

    表  2  改良剂对土壤电导率、pH和代换性钠的影响

    Table  2.   Effects of soil ameliorant on electric conductivity,pH,exchangeable sodium of soil

    处理
    Treatment
    电导率(μs cm−1
    Soil electric conductivity
    pH代换性钠(cmol kg−1
    Soil exchangeable sodium
    CK 562.0 ± 20.3 Bb 9.02 ± 0.11 Aa 8.73 ± 0.51 Aa
    T 698.5 ± 30.6 Aa 7.66 ± 0.20 Bb 1.62 ± 0.11 Bb
    下载: 导出CSV

    表  3  改良剂对各粒级水稳性团聚体的影响

    Table  3.   Effects of soil ameliorant on the proportions of different water stable aggregate size of soil

    处理
    Treatment
    各粒级水稳性团聚体的质量百分比(%)
    The proportion of different water stable aggregate size
    > 5 mm2 ~ 5 mm1 ~ 2 mm0.5 ~ 1.0 mm0.25 ~ 0.50 mm≥ 0.25 mm的总和
    CK 1.27 ± 0.33 Bb 2.44 ± 0.69 Bb 2.26 ± 0.39 Bb 2.21 ± 0.21 Bb 1.80 ± 0.69 Bb 9.99 ± 1.39 Bb
    T 21.9 ± 2.33 Aa 4.05 ± 1.01 Aa 15.9 ± 2.33 Aa 14.8 ± 2.33 Aa 19.4 ± 1.69 Aa 75.2 ± 6.99 Aa
    下载: 导出CSV

    表  4  样品的Alpha多样性指数

    Table  4.   The Alpha diversity index of the sample

    处理
    Treatment
    Chao指数
    Chao index
    ACE指数
    ACE index
    Simpson 指数
    Simpson index
    Shannon指数
    Shannon index
    CK 2082 ± 55.0 Aa 2184 ± 53.9 Aa 0.9910 ± 0.0007 Aa 8.547 ± 0.024 Ab
    T 1721 ± 80.2 Bb 1744 ± 80.4 Bb 0.9907 ± 0.0031 Aa 8.687 ± 0.053 Aa
    下载: 导出CSV

    表  5  土壤样品优势菌及功能菌分布特征

    Table  5.   Characteristics of dominant and functional bacteria in the soil samples

    菌种
    Bacteria
    主要功能
    Main function
    相对丰度(%)
    Relative abundance
    CKT
    芽单胞菌属(Gemmatimonas 脱氮[18] 6.58 1.53
    藤黄单胞菌(Luteimonas 参与环境中的碳和氮的循环[19] 3.73 2.94
    溶杆菌属(Lysobacter 固氮作用[20] 2.73 2.12
    鞘脂单胞菌属(Sphingomonas 好氧反硝化作用[21] 2.11 1.93
    节杆菌属(Arthrobacter 异养硝化-好氧反硝化菌[22] 2.08 0.75
    类诺卡氏菌属(Nocardioides 反硝化作用[23] 1.79 1.29
    海洋杆菌属(Pontibacter 嗜盐特性[24] 1.40 1.14
    新鞘脂菌属(Novosphingobium 降解碳化合物作用[25] 0.91 1.14
    不动杆菌属(Acinetobacter 异养硝化-好氧反硝化菌[26] 0.88 4.03
    假单胞菌属(Pseudomonas 异养硝化-好氧反硝化菌[26] 0.61 1.42
    慢生根瘤菌属(Bradyrhizobium 固氮作用[27] 0.59 1.01
    贪铜菌属(Cupriavidus 异养硝化-好氧反硝化菌[28] 0.50 1.41
    嗜盐海洋粘菌属(Haliangium 嗜盐特性[29] 0.49 0.18
    下载: 导出CSV
  • [1] 赵兰坡. 松嫩平原盐碱地改良利用[M]. 北京: 科学出版社, 2013.
    [2] 张海欧. 浅谈不同材料在盐渍化土壤改良中的应用[J]. 农学学报, 2019, 9(12): 39 − 42. doi: 10.11923/j.issn.2095-4050.cjas18120025
    [3] 黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010.
    [4] 马玉涛, 苑佰飞, 张 鹏, 等. 硫酸铝对新开垦苏打盐碱水田的快速改良和培肥效果[J]. 水土保持学报, 2020, 34(2): 325 − 330+339.
    [5] 尹志荣, 黄建成, 桂林国. 稻作条件下不同施肥模式对原土盐碱地的改良培肥效应[J]. 土壤通报, 2016, 47(2): 414 − 418.
    [6] 秦 萍, 张俊华, 孙兆军. 降碱抑盐改良剂对重度盐化碱土的改良效果[J]. 干旱地区农业研究, 2019, 37(4): 269 − 283. doi: 10.7606/j.issn.1000-7601.2019.04.36
    [7] 汪顺义, 冯浩杰, 王克英, 等. 盐碱地土壤微生物生态特性研究进展[J]. 土壤通报, 2019, 50(1): 0233 − 0239.
    [8] 杨祥波. 改良剂与有机物料结合对新开碱地稻田土壤性状的优化[J]. 河南农业科学, 2020, 49(5): 88 − 96.
    [9] 赵金星, 周 伟, 战英策, 等. 土壤改良剂对盐化草甸土物理性质及水稻产量的影响[J]. 作物杂志, 2018, (6): 138 − 143.
    [10] 石礼文, 王承浩, 周 伟, 等. 改良剂对盐化草甸土不同土层理化性质及大豆产量的影响[J]. 大豆科学, 2020, 39(2): 269 − 276.
    [11] 唐玉姝, 魏朝富, 颜廷梅, 等. 土壤质量生物学指标研究进展[J]. 土壤, 2007, 39(2): 157 − 163. doi: 10.3321/j.issn:0253-9829.2007.02.002
    [12] 林耀奔, 叶艳妹, 杨建辉, 等. 土地整治对土壤微生物多样性的影响分析[J]. 环境科学学报, 2019, 39(8): 2644 − 2653.
    [13] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000.
    [14] 牛 浩, 罗万清, 王晋峰, 等. 冻融对东北黑土风干团聚体与水稳性团聚体组成及稳定性的影响[J]. 土壤通报, 2020, 51(4): 841 − 847.
    [15] Desantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied & Environmental Microbiology, 2006, 72(7): 5069 − 5072.
    [16] Bokulich N A, Subramanian S, Faith J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2012, 10(1): 57 − 59.
    [17] Chao A, Shen T J. Nonparametric prediction in species sampling[J]. Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9(3): 253 − 269. doi: 10.1198/108571104X3262
    [18] Hani H, Siegenthaler A, Candinas T. Soil effects due to sewage sludge application in agriculture[J]. Fertilizer Research, 1995, 43(1-3): 149 − 156.
    [19] 董艳辉, 于宇凤, 温 鑫. 基于高通量测序的藜麦连作根际土壤微生物多样性研究[J]. 华北农学报, 2019, 34(2): 205 − 211. doi: 10.7668/hbnxb.201751218
    [20] Christensen P, Cook F D. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio[J]. International Journal of Systematic Bacteriology, 1978, 28(3): 367 − 393. doi: 10.1099/00207713-28-3-367
    [21] Patureau D, Zumstein E, Delgenes J P, et al. Aerobic denitrifies isolated from diverse natural and managed ecosystems[J]. Microbial Ecology, 2000, 39(2): 145 − 152. doi: 10.1007/s002480000009
    [22] 蔡 茜. 2019. 铁与铜离子对Arthrobacter nicotianae D51异养硝化和好氧反硝化作用的影响[D]. 重庆, 西南大学, 2019.
    [23] 张 健, 董星晨, 张 鹤, 等. 长期施氮对马铃薯田土壤剖面硝态氮积累及细菌群落结构的影响[J]. 甘肃农业大学学报, 2019, 54(1): 30 − 41.
    [24] 萨如拉, 杨恒山, 范 富, 等. 玉米秸秆还田对盐碱地土壤细菌多样性的影响[J]. 玉米科学, 2017, 25(2): 106 − 111.
    [25] Eichorst S A, Kuske C R. Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing[J]. Applied and Environmental Microbiology, 2012, 78: 2316 − 2327.
    [26] 孙庆花, 于德爽, 张培玉, 等. 1株海洋异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 环境科学, 2016, 37(2): 647 − 654.
    [27] 方文生. 土壤熏蒸对氮循环功能微生物及 N2O 生成的影响与机制[D]. 北京: 中国农业科学院, 2019.
    [28] 孙智毅. 一株异养硝化-好氧反硝化菌Cupriavidus sp. S1 的的筛选及降解特性研究[D]. 太原: 太原理工大学, 2017.
    [29] Fudou R, Jojima Y, Lizuka T, et al. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov. : Novel moderately halophilic myxobacteria isolated from coastal saline environments[J]. Journal of General & Applied Microbiology, 2002, 48(2): 109 − 115.
    [30] 李 新. 不同盐碱程度盐碱土壤微生物多样性研究[D]. 呼和浩特: 内蒙古师范大学, 2015.
    [31] 孙 慧, 张建锋, 许华森, 等. 余姚滨海不同盐碱度土壤微生物群落组成及土壤酶活性的变化[J]. 应用生态学报, 2016, 27(10): 3361 − 3370.
    [32] 景宇鹏. 土默川平原盐渍化土壤改良前后土壤特性及玉米品种耐盐性研究[D]. 呼和浩特: 内蒙古农业大学, 2014.
    [33] 王巍琦, 李变变, 张 军, 等. 干旱区不同类型盐碱土壤细菌群落多样性[J]. 干旱区研究, 2019, 36(5): 1202 − 1211.
    [34] 付 健. 木霉菌提高玉米耐盐碱机理及其对根际土壤微生物多样性的影响[D]. 大庆: 黑龙江八一农垦大学, 2017.
    [35] Deangelis K M, Brodie E L, Desantis T Z. Selective progressive response of soil microbial community to wild oat roots[J]. International Society for Microbial Ecology Journal, 2009, 3(2): 168 − 178.
    [36] Smit E, Leeflang P, Gommans S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J]. Applied & Environmental Microbiology, 2001, 67(5): 2284 − 2291.
    [37] Jones R T, Robeson M S, Lauber C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009, 3(4): 442 − 453. doi: 10.1038/ismej.2008.127
    [38] Canfora L, Bacci G, Pinzari F, et al. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil[J]. PLoS One, 2014, 9(9): e106662. doi: 10.1371/journal.pone.0106662
    [39] 郑 勇, 郑袁明, 张丽梅, 等. 极端环境下嗜热酸甲烷营养细菌研究进展[J]. 生态学报, 2009, 29(7): 3864 − 3871. doi: 10.3321/j.issn:1000-0933.2009.07.049
    [40] 赵 飞, 刘 畅, 朱昌玲, 等. 功能微生物与生物炭对海滨锦葵生长及滨海盐土地力的影响[J]. 中国土壤与肥料, 2020, (05): 161 − 168.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  331
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-10-07
  • 刊出日期:  2021-06-04

目录

    /

    返回文章
    返回