Community Structure Characteristics of Soil Macro-fauna Communities in Different Altitudinal Plots under Picea schrenkiana in Western Tianshan Mountains, Xinjiang
-
摘要:
目的 明确新疆西天山不同海拔高度雪岭云杉林下大型土壤动物群落的组成、分布特征和多样性,为当地森林资源生态系统健康评价、土地利用管理及资源可持续利用提供土壤动物学依据。 方法 选取新疆西天山不同海拔高度雪岭云杉林样地(Ⅰ, 海拔1414 m;Ⅱ,海拔1595 m;Ⅲ, 海拔1724 m;Ⅳ,海拔1868 m ),使用手捡法收集云杉林下大型土壤动物,采用单因素方差分析(One-way ANOVA)和最小显著差异法(LSD)比较大型土壤动物群落不同数据组间的差异,采用冗余分析(Redundancy analysis, RDA)排序方法分析土壤动物群落物种重要值与环境变量的关系。 结果 四个样地共捕获大型土壤动物427只,隶属于3门7纲16目23科。四个样地垂直分布特征表现为样地Ⅱ大型土壤动物平均密度在7月的表聚性特征较为明显,随着土层深入呈现递减趋势,其它样地无明显的分布规律。大型土壤动物多样性指数、均匀度指数、优势度指数和丰富度指数在不同海拔高度均有所不同,样地Ⅰ大型土壤动物的多样性指数、均匀度指数和丰富度指数为四个海拔中最高。各个样地杂食性大型土壤动物的个体密度所占4个功能群个体密度总量的比例均为最低;植食性、腐食性和捕食性大型土壤动物的个体密度所占个体密度总量的比例则高达90%以上。土壤环境因子对大型土壤动物群落的生态分布有一定影响,其中土壤的全钾和硝态氮对大型土壤动物群落多样性以及分布有较高影响。 结论 低海拔雪岭云杉林下大型土壤动物种类丰富,有机质、全氮、速效磷和pH对大型土壤动物群落的影响偏小。 Abstract:Objective The aims were to understand the characteristics of soil fauna community structure composition, distribution and diversities in different altitudes under Picea schrenkiana in the Western Tianshan Mountains, which will provide soil zoological basis for local forest resource ecosystem health assessment, land use management and sustainable utilization of resources. Method The soil fauna under P. schrenkiana at different altitudes (1414 m, plot-Ⅰ; 1595 m, plot-Ⅱ; 1724 m, plot-Ⅲ and 1868 m, plot-Ⅳ) were selected as the research object. One way ANOVA and least significant difference (LSD) were used to compare the differences between different data groups of soil macro-fauna communities at different altitudinal plots under P. schrenkiana, and redundancy analysis was used to analyze the relationship between the species important values of soil fauna community and environmental variables. Result The results showed that a total of 427 macro-fauna were captured, belonging to 23 families, 16 orders (suborders), 7 classes, 3 phyla. The vertical distribution characteristics of four plots showed that the average density of soil macro-fauna in plot-Ⅱ had obvious surface aggregation characteristics in July, and showed a decreasing trend with the depth of the soil layer, while there was no obvious distribution in other plots. The diversity index, evenness index, dominance index and richness index of soil macro-fauna were different at different altitude plots. The diversity index, evenness index and richness index of soil macro-fauna in plot-Ⅰ were the highest among four plots. Among the four functional groups (herbivorous, saprophytic, predatory and omnivorous), the proportion of the individual density of omnivorous macro-fauna to the total individual density of the four functional groups in each plot was the lowest and the individual density of the other feeding habits macrofauna accounted for more than 90% of the total individual density. Moreover, soil environmental factors had a certain impact on the ecological distribution of soil macro-fauna, in which total potassium and nitrate nitrogen had a higher impact on the diversity and distribution of soil macro-fauna. Conclusion There were rich species of soil macro-fauna communities at the lower altitudinal plots under P. schrenkiana, and the effects of soil organic matter, total nitrogen, available phosphorus and pH on the macro-fauna community were little. -
Key words:
- Coniferous forest /
- Soil fauna /
- Ecological distribution /
- Seasonal dynamics /
- Environmental factor
-
图 5 土壤动物群落和土壤环境因子的RDA排序图
SOM,土壤有机质;TN,全氮;TP,全磷;TK,全钾;P,速效磷;K,速效钾;NN, 硝态氮;AN,铵态氮;正蚓科, Lumbricidae; 蜘蛛目,Araneida; 盲蛛目,Phalangida; 石蜈蚣科,Lithobiidae; 地蜈蚣科,Geophilidae; 蠼螋科,Labiduridae; 隐翅虫科, Staphylinidae; 叩甲科,Elateridae; 露尾甲科,Nitidulidae; 象甲科,Curculionidae; 步甲科,Carabidae; 蚁科,Formicidae; 鞘翅目幼虫,Coleoptera Larvae; 双翅目幼虫,Diptera Larvae
Figure 5. Redundancy analysis(RDA)of composition of the soil fauna with soil environmental factors
表 1 研究区自然概况
Table 1. Natural condition of study sites
样地
PlotⅠ Ⅱ Ⅲ Ⅳ 海拔(m) 1414 1595 1724 1868 经度 82°47′27″E 82°49′51″E 82°49′16″E 82°48′56″E 纬度 43°11′36″N 43°08′44″N 43°07'25''N 43°06′04″N 坡度 (°)
坡向20
北坡4
北坡35
北坡3
北坡人为干扰程度 弱 强 弱 弱 表 2 不同海拔样地大型土壤动物密度统计
Table 2. Density statistics of macro-fauna in different altitude plots
土壤动物类群
Soil fauna样地Ⅰ
Plot-Ⅰ样地Ⅱ
Plot-Ⅱ样地Ⅲ
Plot-Ⅲ样地Ⅳ
Plot-Ⅳ平均密度(个 m−2)
Mean density
(ind m−2)占比(%)
Percentage平均密度(个 m−2)
(ind m−2)占比(%)
Percentage平均密度(个 m−2)
(ind. m−2)占比(%)
Percentage平均密度(个 m−2)
(ind m−2)占比(%)
Percentage正蚓科 33.78 17.76 62.22 31.82 80 36.89 28.44 18.18 琥珀螺科 1.78 0.82 鼠妇科 1.78 0.93 蜘蛛目 21.33 11.21 16.00 8.18 3.56 1.64 5.33 3.41 盲蛛目 1.78 0.93 3.56 1.82 3.56 1.64 球马陆科 3.56 1.82 8.89 5.68 石蜈蚣科 17.78 9.35 16 7.38 1.78 1.14 地蜈蚣科 16.00 8.41 30.22 15.45 39.11 18.03 80 51.14 叶蝉科 1.78 0.93 蝗科 1.78 0.93 蠼螋科 1.78 0.93 10.67 4.92 盾蝽科 3.56 1.87 金龟子科 1.78 0.91 隐翅虫科 5.33 2.80 5.33 2.73 10.67 4.92 叩甲科 10.67 5.61 露尾甲科 10.67 5.61 象甲科 3.56 1.87 7.11 4.55 瓢虫科 1.78 0.93 步甲科 23.11 12.15 7.11 3.64 17.78 8.20 3.56 2.27 拟步甲科 1.78 0.93 毛蚊科 1.78 0.93 麻蝇科 1.78 0.91 茧蜂科 1.78 0.93 小蜂总科 1.78 0.93 蚁科 5.33 2.80 14.22 7.27 10.67 4.92 7.11 4.55 鞘翅目幼虫 16.00 8.41 44.44 22.73 21.33 9.84 10.67 6.82 双翅目幼虫 3.56 1.87 5.33 2.73 1.78 0.82 1.78 1.14 鳞翅目幼虫 1.78 0.93 1.78 1.14 平均密度(ind. m−2) 190.22 100 195.56 100 216.89 100 156.44 100 总类群数 24 12 12 11 注:优势类群( > 10%),常见类群(1% ~ 10%),稀有类群( < 1%)。 表 3 RDA排序摘要
Table 3. RDA ordination summary
排序轴
Axes排序轴1
Axis1排序轴2
Axis2排序轴3
Axis3排序轴4
Axis4特征值 0.131 0.058 0.030 0.028 物种-环境相关性 0.739 0.565 0.686 0.502 物种累积百分比方差 13.1 18.9 21.9 24.7 物种-环境关系方差的累积百分比 45.8 66.1 76.6 86.5 特征值总和 1 典范值总和 0.286 表 4 环境因子的重要性排序
Table 4. Importance ranking of soil environmental factors
环境因子
Environmental factor重要性排序
Importance ranking解释量(%)
Percentage of interpretationF P 硝态氮 1 7.1 3.542 0.002 全钾 2 6.5 3.203 0.006 有效氮 3 5.1 2.488 0.022 全磷 4 4.6 2.235 0.028 速效钾 5 4.4 2.138 0.046 pH 6 3.9 1.842 0.084 速效磷 7 3.0 1.411 0.178 有机质 8 2.0 0.940 0.432 全氮 9 1.7 0.789 0.582 -
[1] Körner C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology & Evolution, 2007, 22(11): 569 − 574. [2] Nagy L, Grabherr G, Körner C, et al. Alpine biodiversity in space and time: a synthesis[M]. Alpine biodiversity in Europe, Springer, Berlin, Heidelberg, 2003: 453-464. [3] Yin R, Siebert J, Eisenhauer N, Schädler M. Climate change and intensive land use reduce soil animal biomass via dissimilar pathways[J]. Elife. 2020, 9, e54749. [4] Kikvidze Z, Pugnaire F I, Brooker R W, et al. Linking patterns and processes in alpine plant communities: a global study[J]. Ecology, 2005, 86(6): 1395 − 1400. doi: 10.1890/04-1926 [5] Klimes L. Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas)[J]. Basic and Applied Ecology, 2003, 4(4): 317 − 328. doi: 10.1078/1439-1791-00163 [6] 王壮壮, 李天顺, 朱时应, 等. 热振森林大型土壤动物群落特征及其影响因素[J]. 中国环境科学, 2022, 42(7): 3392 − 3402. [7] Marian F, Sandmann D, Krashevska V, et al. Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration[J]. Ecology and evolution, 2017, 7(16): 6432 − 6443. doi: 10.1002/ece3.3189 [8] Stebaeva S. Collembolan communities of the Ubsu-nur Basin and Adjacent Mountains (russia, Tuva)[J]. Pedobiologia, 2003, 47: 341 − 356. doi: 10.1078/0031-4056-00198 [9] Lessard J P, Sackett T E, Reynolds W N, et al. Determinants of the detrital arthropod community structure: the effects of temperature and resources along an environmental gradient[J]. Oikos, 2011, 120(3): 333 − 343. doi: 10.1111/j.1600-0706.2010.18772.x [10] Fujii S, Makita N, Mori A S, Takeda H. Plant species control and soil faunal involvement in the processes of above- and below-ground litter decomposition[J]. Oikos, 2016, 125(6): 883 − 892. doi: 10.1111/oik.02457 [11] García-Palacios P, McKie B G, Handa I T, et al. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes[J]. Functional Ecology, 2016, 30(5): 819 − 829. doi: 10.1111/1365-2435.12589 [12] 丁彰琦, 徐国瑞, 张 霜, 等. 北京东灵山土壤动物多样性海拔格局的尺度推绎规律[J]. 应用生态学报, 2021, 32(12): 4272 − 4278. [13] 刘翠玲, 潘存德, 师瑞峰. 鳞毛蕨(Dryopteris filix-mas)天山云杉林倒木更新分析[J]. 干旱区研究, 2007, 24(6): 821 − 825. [14] 孙立娜. 龙湾自然保护区森林土壤动物群落特征及功能类群划分[D]. 长春: 东北师范大学, 2012. [15] 南开大学, 中山大学, 北京大学, 等. 昆虫学[M]. 北京: 人民教育出版社, 1980. [16] 郑乐怡, 归鸿. 昆虫分类[M]. 南京: 南京师范大学出版社, 1999. [17] 尹文英. 中国土壤动物检索图鉴[M]. 北京: 科学出版社, 1998. [18] 青木淳一. 土壤动物学[M]. 东京: 北隆馆, 1973. [19] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2008. [20] Magurran A E. Ecological diversity and its measurement[M]. New Jersey: Princeton University Press, 1988: 1 − 179. [21] 吴东辉, 张 柏, 安艳芬. 吉林省中部黑土区农业土地利用方式对土壤螨类群落特征的影响[J]. 土壤通报, 2006, 37(1): 121 − 125. [22] 王文君, 杨万勤, 谭 波, 等. 四川盆地亚热带常绿阔叶林不同物候期凋落物分解与土壤动物群落结构的关系[J]. 生态学报, 2013, 33(18): 5737 − 5750. [23] 赵世魁, 刘贤谦, 冀卫荣. 庞泉沟华北落叶松林土壤动物群落动态研究[J]. 山西农业大学学报(自然科学版), 2006, 26(1): 66 − 69. [24] Blankinship J C, Niklaus P A, Hungate B A. A meta-analysis of responses of soil biota to global change[J]. Oecologia, 2011, 165(3): 553 − 565. doi: 10.1007/s00442-011-1909-0 [25] 李 娜, 张雪萍, 张利敏. 三种温带森林大型土壤动物群落结构的时空动态[J]. 生态学报, 2013, 33(19): 6236 − 6245. [26] 陈德来, 陈凌云, 史红全, 等. 大夏河甘南段河流湿地土壤节肢动物群落特征及季节动态[J]. 冰川冻土, 2014, 36(2): 442 − 450. [27] 郝宝宝, 曹四平, 李 阳, 等. 吴起县不同年限退耕还林地大中型土壤动物时空变化[J]. 干旱区资源与环境, 2020, 34(3): 130 − 136. [28] 李 涛. 瑞昌石灰岩山区退耕还林土壤动物研究[D]. 南昌: 江西农业大学, 2011. [29] 刘任涛, 赵哈林, 赵学勇. 半干旱区草地土壤动物多样性的季节变化及其与温湿度的关系[J]. 干旱区资源与环境, 2013, 27(1): 97 − 101. [30] 刘继亮, 殷秀琴, 邱丽丽. 左家自然保护区大型土壤动物与土壤因子关系研究[J]. 土壤学报, 2008, 45(1): 130 − 136. [31] 王 玲, 赵广亮, 杨雨果, 等. 北京八达岭地区油松人工林土壤动物群落特征研究[J]. 西北农林科技大学学报(自然科学版), 2018, 46(9): 41 − 50. [32] 彭彩云, 王 戈, 赵 波, 等. 长江上游典型人工植被下中小型土壤动物群落结构特征[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 585 − 595. [33] 排孜丽耶·合力力, 吾玛尔·阿布力孜, 阿丽亚·司地克. 新疆天山森林公园土壤螨类群落多样性与环境因子的相关性[J]. 生态学报, 2019, 39(5): 1639 − 1652. [34] 李晓强, 殷秀琴, 孙立娜. 松嫩草原不同演替阶段大型土壤动物功能类群特征[J]. 生态学报, 2014, 34(2): 442 − 450. [35] 林 琳, 邬天媛, 李景科, 等. 大庆草甸草原区大型土壤动物功能类群[J]. 地理研究, 2013, 32(1): 41 − 54. [36] 王壮壮, 贺 凯, 朱时应, 等. 西藏年楚河流域湿地大型土壤动物群落特征[J]. 干旱区资源与环境, 2021, 35(11): 184 − 190. [37] Kamczyc J, Urbanowski C, Pers-Kamczyc E. Mite communuities (Acari: Mesostigmta) in young and mature coniferous forests after surface wildfire[J]. Experimental and Applied Acarology, 2017, 72(2): 145 − 160. doi: 10.1007/s10493-017-0148-4 [38] Minor M A, Babenko A B, Ermilov S G. Oribatid mites (Acari: Oribatida) and springtails (Collembola) in alpine habitats of southern New Zealand[J]. New Zaeland Journal of Zoology, 2017, 44(1): 65 − 85. doi: 10.1080/03014223.2016.1251950 [39] 邵元虎, 张卫信, 刘胜杰, 等. 土壤动物多样性及其生态功能[J]. 生态学报, 2015, 35(20): 6614 − 6625. [40] Ayuke F O, Brussaard L, Vanlauwe B, et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation[J]. Applied Soil Ecology, 2011, 48(1): 53 − 62. doi: 10.1016/j.apsoil.2011.02.001 [41] 李红月, 殷秀琴, 马 辰, 等. 长白山地丘陵区不同土地利用方式土壤动物群落生态分布特征[J]. 土壤学报, 2017, 54(4): 1018 − 1028. [42] 柯 欣, 岳巧云, 傅荣恕, 等. 浦东滩涂中型土壤动物群落结构及土质酸碱度生物评价分析[J]. 动物学研究, 2002, (2): 129 − 135. -