Characteristics of Profile Changes of Biologically-based Phosphorus Components in Red Soil of Sloping Farmland
-
摘要:
目的 分析不同利用方式红壤中生物有效性磷组分的剖面垂直变化特征与差异,以探明土壤磷素的根际过程。 方法 以江西鹰潭孙家典型红壤小流域观测站为依托,以位于小流域坡上、坡中及坡下花生旱地与稻田红壤为研究对象,基于土壤磷素的生物有效性分级方法,分析了坡耕地红壤发生层中可溶性磷(CaCl2-P)、易被有机酸活化释放的磷(Citrate-P)、易被磷酸酶矿化的有机磷(Enzyme-P)、矿物结合态磷(HCl-P)及全磷、有效磷的含量变化;探讨了土壤全氮、有机质、铁铝氧化物等指标与各组分磷的相关关系。 结果 坡耕地红壤耕作层土壤全磷、有效磷均显著高于底层土壤,稻田红壤耕作层全磷和有效磷均随坡位降低而显著降低,而花生旱地的有效磷则呈相反变化、且坡中土壤全磷显著高于坡上与坡下。各生物有效磷组分含量大小依次为:HCl-P > Citrate-P > CaCl2-P > Enzyme-P,且均随剖面深度增加而降低,但受坡位影响无明显规律性。稻田红壤剖面土壤全磷平均含量高于花生旱地,但有效磷则相反;稻田红壤耕作层中仅Enzyme-P含量显著高于花生旱地。相关分析表明,坡耕地红壤HCl-P、Citrate-P及CaCl2-P均与有效磷显著正相关,与全氮、全磷、有机质极显著正相关,与游离铁氧化物含量则极显著负相关;而稻田红壤HCl-P及Citrate-P与游离铝氧化物显著负相关。 结论 孙家流域内坡耕地红壤发生层中各组分磷含量均随剖面深度增加而降低,但受坡位影响无明显规律性。花生旱地与稻田红壤剖面有效磷分别主要来自于HCl-P、Citrate-P与CaCl2-P、Citrate-P;土壤全氮、全磷、有机质和铁铝氧化物是影响坡耕地红壤磷生物有效性的主要因子,在实际生产中可通过增施有机肥与调节游离态铁铝氧化物数量来提高坡耕地红壤磷素的生物有效性。 Abstract:Objective To explore the rhizosphere process of soil phosphorus (P), the profile vertical variation characteristics and differences of bioavailable P components in red soil under different utilization modes were analyzed. Method Based on the biologically-based P (BBP) method, the quantitative changes of soluble P (CaCl2-P), organic acid activated P (Citrate-P), Organic P mineralized by acid phosphatase and phytase (Enzyme-P), potential inorganic P (HCl-P), total P (TP), and available P (Bray-P) of pedogenic horizons were determined in sloping farmland, which located at the observation station of the typical red soil small watershed in Sunjia, Yingtan, Jiangxi Province. The correlations among soil pH, total nitrogen (TN), soil organic matter (SOM), iron-aluminum oxides and P components were analyzed by structural equation model. Result The results showed that TP and Bray-P contents were higher in tillage layer than those in the bottom layers of sloping red farmland soil, while the TP and Bray-P in the red paddy field decreased significantly with the slope, while the Bray-P in the peanut upland showed the opposite change, and the TP in the middle slope was significantly higher than those in the top and bottom slopes. And the contents of each biological effective P component were in the following order: HCl-P > Citrate-P > CaCl2-P > Enzyme-P, and all of them decreased with increasing depth of the profile, but there was no obvious regularity by slope position. The TP content in the red soil profile of paddy field was generally higher than that of peanut upland, while the Bray-P was opposite. However, only the Enzyme-P in the Ap1 layer of the paddy field was significantly higher than that of the peanut upland. Correlation analysis showed that HCl-P, Citrate-P and CaCl2-P were significantly positively correlated with Bray-P, highly significantly positively correlated with TN, TP, and SOM, and negatively correlated with Fed (P < 0.01), while HCl-P and Citrate-P in red soil of paddy field were significantly negatively correlated with Ald (P < 0.05). Conclusion The P of each fraction in the red soil pedogenic horizons of sloping farmland in Sunjia watershed decreased with increasing depth of the profile, but there was no obvious regularity by slope position. The Bray-P in peanut upland and paddy field was mainly from HCl-P, Citrate-P, CaCl2-P, and Citrate-P. TN, TP, SOM, and iron-aluminum oxides were the main factors affecting the P bioavailability of red soil sloping land. In practical production, soil P bioavailability could be improved by increasing application of organic fertilizer and adjusting the morphology of iron-aluminum oxides. -
图 4 花生旱地与稻田土壤可溶态磷、易被有机酸活化磷及矿物结合态磷的剖面变化
CaCl2-P:土壤可溶性磷,CaCl2-P/TP:土壤可溶性磷占土壤全磷的百分比,Citrate-P:易被有机酸活化释放的磷,Citrate-P/TP:易被有机酸活化释放的磷占土壤全磷的百分比,HCl-P:土壤矿物结合态磷,HCl-P/TP:土壤矿物结合态磷占土壤全磷的百分比。
Figure 4. Profile changes of CaCl2 extractable P (CaCl2-P), Citrate extractable P (Citrate-P) and HCl extractable P (HCl-P) in upland and paddy field
表 1 坡耕地红壤发生层划分信息及其理化性质
Table 1. Profile information and basic physicochemical properties of pedogenic horizons in sloping farmland
利用方式
Land use坡位及代号
Location and
code种植年限(年)
Cultivated year
(year)发生层
Horizon深度(cm)
Depth容重(g cm–3)
Bulk
densitypHKCl Eh 有机质(g kg–1)
Soil organic
matter全氮
Total
nitrogenFeo
(g kg–1)Alo
(g kg–1)Fed
(g kg–1)Ald
(g kg–1)花生
旱地
(PU)坡上
(PU-T)20-30 Ap1 0 ~ 15 1.28 3.85 e 172.3 13.6 a 0.83 a 2.02 bc 3.55 c 36.0 b 11.8 b Ap2 15 ~ 30 1.40 3.90 d 169.3 4.71 b 0.43 b 2.16 ab 4.14 a 41.6 a 12.8 ab Bt1 30 ~ 60 1.19 3.97 c 165.3 4.37 b 0.47 b 2.22 ab 4.10 ab 43.5 a 13.5 a Bt2 60 ~ 90 1.30 4.06 a 160.3 3.74 bc 0.47 b 2.51 a 3.91 b 44.4 a 12.7 ab C 90 ~ 120 1.29 4.01 b 163.0 2.89 c 0.41 b 1.71 c 3.22 d 44.6 a 11.9 b 坡中
(PU-M)Ap1 0 ~ 15 1.44 3.90 c 169.3 14.1 a 0.90 a 1.76 b 3.53 a 38.0 b 11.3 a Ap2 15 ~ 30 1.40 3.91 bc 168.7 5.57 b 0.53 b 2.13 a 3.95 a 42.5 a 11.9 a Bt1 30 ~ 60 1.18 3.94 b 166.7 3.79 c 0.50 b 2.31 a 3.95 a 41.5 ab 11.3 a Bt2 60 ~ 90 1.33 4.02 a 162.7 3.56 c 0.50 b 2.27 a 3.39 a 40.4 ab 10.2 b C 90 ~ 120 1.41 4.01 a 163.0 2.91 c 0.44 b 1.49 b 3.00 a 41.8 ab 10.0 b 坡下
(PU-B)Ap1 0 ~ 15 1.48 3.80 c 175.7 10.1 a 0.73 a 1.24 a 2.56 abc 32.4 c 8.44 b Ap2 15 ~ 30 1.40 3.79 c 175.7 4.25 b 0.63 bc 1.18 a 2.74 ab 40.4 c 9.90 a Bt1 30 ~ 60 1.44 3.81 c 174.7 3.33 c 0.5 abc 1.00 a 2.86 a 42.0 b 9.18 ab Bt2 60 ~ 90 1.48 3.88 a 170.0 2.36 d 0.37 c 0.93 a 2.36 c 46.5 ab 9.00 ab C 90 ~ 120 1.47 3.84 b 172.3 2.32 d 0.46 bc 1.04 a 2.43 bc 48.1 a 8.94 ab 稻田
(PF)坡上
(PF-T)50-60 Ap1 0 ~ 20 0.87 4.01 c 158.7 44.1 a 2.67 a 3.26 a 3.92 b 21.6 c 11.0 c Ap2 20 ~ 25 1.38 4.32 b 141.3 13.7 b 0.90 b 1.89 c 3.22 b 55.2 a 15.5 b Br1 25 ~ 50 1.52 4.76 a 116.0 6.49 c 0.43 c 1.74 c 2.33 b 41.5 b 14.5 b Br2 50 ~ 60 1.50 4.72 a 118.7 8.56 c 0.63 bc 2.45 bc 3.69 b 39.1 b 15.2 b Brs 60 ~ 100 1.33 4.20 b 148.3 9.90 bc 0.91 b 3.06 d 5.39 a 50.6 a 21.8 a 坡中
(PF-M)20-30 Ap1 0 ~ 15 1.11 4.06 a 156.0 16.8 a 1.10 a 5.42 a 3.05 a 36.8 ab 10.4 bc Ap2 15 ~ 20 1.69 4.09 a 154.3 8.51 b 0.57 b 4.22 b 2.42 a 39.6 a 11.2 a Br1 20 ~ 40 1.57 4.06 a 155.7 5.75 bc 0.40 b 1.52 c 2.51 a 34.3 b 11.2 a Br2 40 ~ 80 1.41 3.91 b 164.0 2.70 c 0.30 b 1.09 cd 2.62 a 33.7 b 10.7 ab C 80 ~ 120 1.46 3.84 c 168.7 2.13 c 0.32 b 0.65 d 1.75 a 40.8 a 9.81 c 坡下
(PF-B)400-500 Ap1 0 ~ 15 1.27 4.02 b 158.7 42.6 a 2.57 a 3.63 a 2.76 b 16.8 d 7.34 c Ap2 15 ~ 30 1.56 4.00 b 159.3 12.0 b 0.73 b 3.64 a 2.36 b 43.6 b 14.1 b Br 30 ~ 60 0.93 4.01 b 159.3 10.1 b 0.73 b 4.30 a 3.44 a 39.0 c 13.2 b Brs 60 ~ 100 0.96 4.65 a 122.7 8.06 b 0.76 b 2.53 b 3.60 a 52.3 a 18.4 a 注:相同小写字母表示同一剖面不同发生层间差异不显著(P < 0.05)。Feo:非晶质氧化铁,Alo:非晶质氧化铝,Fed:游离氧化铁,Ald:游离氧化铝。Ap1:耕作层,Ap2:土壤次表层,Br1、Bt1:氧化还原层1,Br2、Bt2:氧化还原层2,Br:氧化还原层,Brs:铁锰氧化物结合层,C:母质层。 表 2 稻田红壤耕作层(Ap1)中酶提取态磷的变化
Table 2. Changes of enzyme extractable P (Enzyme-P) in Ap1 of paddy field
稻田土壤
Paddy field酶提取态磷
Enzyme-P
(mg kg–1)酶提取态磷占全磷的比例
Percentage of enzyme-P in total P
(%)PF-T 0.64 0.09 PF-M 0.26 0.09 PF-B 0.66 0.17 注:PF-T:坡上中期稻田,PF-M:坡中新稻田,PF-B:坡下老稻田。 -
[1] 胡怡凡, 刘佳坪, 王子楷, 等. 轮作提高土壤磷生物有效性改善后茬作物磷素营养[J]. 植物营养与肥料学报, 2021, 27(8): 1305 − 1310. doi: 10.11674/zwyf.20398 [2] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522 − 537. doi: 10.1016/j.scitotenv.2017.08.095 [3] Condron L M, Spears B M, Haygarth P M, et al. Role of legacy phosphorus in improving global phosphorus-use efficiency[J]. Environmental Development. 2013, 8: 147–148. [4] Wyngaard N, Cabrera M, Jarosch K, et al. Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution[J]. Soil Biol Biochem, 2016, 96: 107 − 118. doi: 10.1016/j.soilbio.2016.01.022 [5] Cong W F, Suriyagoda L D B, Lambers H. Tightening the phosphorus cycle through phosphorus–efficient crop genotypes[J]. Trends in Plant Science, 2020, 9: 967 − 975. [6] Khan M S, Zaidi A, Wani P A. Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review[J]. Agronomy for Sustainable Development, 2007, 27: 29 − 43. doi: 10.1051/agro:2006011 [7] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615 − 7622. [8] 王艳玲, 何园球, 吴洪生, 等. 长期施肥下红壤磷素积累的环境风险分析[J]. 土壤学报, 2010, 47(5): 880 − 887. doi: 10.11766/trxb200901090016 [9] 许杏红. 红壤旱地与稻田土壤剖面磷的储存容量变化及其环境风险评价[D]. 南京: 南京信息工程大学, 2020. [10] Liang X Q, Jin Y, He M M, et al. Phosphorus speciation and release kinetics of swine manure biochar under various pyrolysis temperatures[J]. Environmental science and pollution research international, 2018, 25: 25780 − 25788. doi: 10.1007/s11356-017-0640-8 [11] 汪 洪, 宋书会, 张金尧, 等. 土壤磷形态组分分级及31P-NMR技术应用研究进展. 植物营养与肥料学报, 2017, 23(2): 512-523. [12] Chang S C, Jackson M L. Fractionation of soil-P[J]. Soil Science, 1957, 84(2): 133 − 144. doi: 10.1097/00010694-195708000-00005 [13] 顾益初, 蒋柏藩. 石灰性土壤无机磷分级的测定方法[J]. 土壤, 1990, 22(2): 101 − 102. [14] Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science, 1978, 125(2): 95 − 101. doi: 10.1097/00010694-197802000-00006 [15] Hedly M J, Stewart W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions inducedby cultivation practices and by laboratory incubations[J]. Journal of the Soil Science Society of America, 1982, 46(5): 970 − 976. doi: 10.2136/sssaj1982.03615995004600050017x [16] Deluca T H, Glancille H C, Harris M, et al. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes[J]. Soil Biology and Biochemistry, 2015, 88: 110 − 119. doi: 10.1016/j.soilbio.2015.05.016 [17] 黄翊兰, 崔丽娟, 李春义, 等. 滨海滩涂湿地不同植被土壤磷的生物有效性及其影响因子分析[J]. 生态环境学报, 2019, 28(10): 1999 − 2005. doi: 10.16258/j.cnki.1674-5906.2019.10.009 [18] 袁佳慧, 汪 玉, 王慎强, 等. 稻麦轮作磷肥减施下水稻土磷素生物有效性特征[J]. 生态与农村环境学报, 2018, 34(7): 599 − 605. doi: 10.11934/j.issn.1673-4831.2018.07.004 [19] Zhong H, Kim Y N, Smith C, et al. Seabird guano and phosphorus fractionation in a rhizosphere with earthworms[J]. Applied Soil Ecology, 2017, 120: 197 − 205. doi: 10.1016/j.apsoil.2017.08.006 [20] 蒋炳伸, 沈健林, 王 娟, 等. 秸秆还田稻田土壤生物有效性磷及水稻磷吸收[J]. 水土保持学报, 2020, 34(6): 309 − 317. doi: 10.13870/j.cnki.stbcxb.2020.06.043 [21] 陈利军, 蒋瑀霁, 王浩田, 等. 长期施用有机物料对旱地红壤磷组分及磷素有效性的影响[J]. 土壤, 2020, 52(3): 451 − 457. doi: 10.13758/j.cnki.tr.2020.03.004 [22] 蔡 观, 胡亚军, 王婷婷, 等. 基于生物有效性的农田土壤磷素组分特征及其影响因素分析[J]. 环境科学, 2017, 38(4): 1606 − 1612. doi: 10.13227/j.hjkx.201608178 [23] 龚子同, 陈志诚, 赵文君, 等. 我国土壤系统分类中富铁铝土壤的分类[J]. 土壤与环境, 2000, (2): 149 − 153. [24] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [25] Zhang X, Li Z W, Zeng G M, et al. Erosion effects on soil properties of the unique red soil hilly region of the economic development zone in southern china[J]. Environmental Earth Sciences, 2012, 67(6): 1725 − 1734. doi: 10.1007/s12665-012-1616-0 [26] 胡云峰, 王擎运, 屠人凤, 等. 长期施肥下旱地红壤剖面磷素的形态变化与累积特征[J]. 华中农业大学学报(自然科学版), 2022, 41(2): 115 − 123. [27] 刘志祥, 江长胜, 祝 滔. 缙云山不同土地利用方式对土壤全磷和有效磷的影响[J]. 西南大学学报(自然科学版), 2013, 35(3): 146 − 151. [28] 王伯仁, 徐明岗, 文石林, 等. 长期施肥对红壤旱地磷组分及磷有效性的影响[J]. 湖南农业大学学报(自然科学版), 2002, (4): 293 − 297. [29] 徐晓锋, 苗艳芳, 郭大勇, 等. 蔬菜保护地土壤磷积累与转化研究[J]. 干旱地区农业研究, 2008, (1): 25 − 28 + 36. [30] 张大庚, 栗 杰, 董 越. 不同种植年限设施菜田土壤无机磷组分的累积和释放特征[J]. 水土保持通报, 2021, 41(4): 93 − 99. [31] 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展[J]. 中国土壤与肥料, 2011, (2): 1 − 9. doi: 10.3969/j.issn.1673-6257.2011.02.001 [32] 刘玉槐, 魏晓梦, 魏 亮, 等. 水稻根际和非根际土壤磷酸酶活性对碳、磷添加的响应[J]. 中国农业科学, 2018, 51(9): 1653 − 1663. doi: 10.3864/j.issn.0578-1752.2018.09.004 [33] 吴小龙, 龚 霞, 曹 灯, 等. 根际土壤磷素有效性的研究进展[J]. 江西农业学报, 2022, 34(1): 127 − 133. doi: 10.19386/j.cnki.jxnyxb.2022.01.018 [34] Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions [J]. Chemosphere, 2017, 188: 677 − 688. [35] 颜 晓, 卢志红, 魏宗强, 等. 几种典型酸性旱地土壤磷吸附的关键影响因素[J]. 中国土壤与肥料, 2019, (3): 1 − 7. doi: 10.11838/sfsc.1673-6257.18314 [36] 苏 玲, 章永松, 林咸永. 干湿交替过程中水稻土铁形态和磷吸附解吸的变化[J]. 植物营养与肥料学报, 2001, (4): 410 − 415. doi: 10.3321/j.issn:1008-505X.2001.04.009 [37] 童文彬, 邱志腾, 章明奎. 植物有效磷与水溶性磷对土壤磷素积累的响应研究[J]. 农学学报, 2020, 10(1): 37 − 42. doi: 10.11923/j.issn.2095-4050.cjas18100017 [38] 刘真娟. 有机质对黑土磷吸附-解吸特性的影响[D]. 长春: 吉林大学, 2019. [39] Yan X, Wei Z, Wang D, et al. Phosphorus status and its sorption-associated soil properties in a paddy soil as affected by organic amendments[J]. Journal of Soils and Sediments, 2015, 15(9): 1882 − 1888. doi: 10.1007/s11368-015-1132-4 [40] 洪欠欠. 有机物料对红壤性稻田土壤磷吸附及其相关因素的影响[D]. 南昌: 江西农业大学, 2018. [41] 严玉鹏. 几种土壤有机磷在铁铝氧化物表面的吸附、解吸与沉淀[D]. 武汉: 华中农业大学, 2015. [42] 王小红, 杨智杰, 刘小飞, 等. 中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响[J]. 生态学报, 2016, 36(9): 2588 − 2596. -