Temperature Sensitivity and Its Driving Factors of Soil Net Nitrogen Mineralization in the Bank Zone of the Three Gorges Reservoir
-
摘要:
目的 三峡库岸带土壤氮矿化过程对三峡水库水体富营养化及生态安全影响显著,明确三峡库岸带土壤净氮矿化对温度升高的响应和驱动因子。 方法 在整个三峡库岸带分9个断面,分别采集消落区(高程145 ~ 155 m、155 ~ 165 m、165 ~ 175 m)和非淹水区(高程175 ~ 185 m)共108个表层土样,在15、22、29和36℃ 四个温度下培养28 d,测定培养前后土壤铵态氮、硝态氮含量变化,计算净氨化速率、净硝化速率和净氮矿化速率及其对温度升高的响应。 结果 在四个温度下三峡库岸带土壤净硝化速率、净氮矿化速率均与高程显著正相关(P < 0.05),而净氨化速率在高程之间无显著差异(P > 0.05);总体上,三峡库岸带净氮矿化速率的温度敏感性(Q10)在0.62 ~ 3.21之间,且消落区比非淹水区土壤净氮矿化对升温更加敏感。降雨是消落区和非淹水区Q10变化的共同驱动因子;此外,消落区Q10与高程、pH值、年均降水量、微生物生物量碳(P < 0.05)以及到三峡大坝的距离呈显著负相关(P < 0.01)。 结论 在未来气候变暖条件下,与非淹水区相比,预期将有更多消落区氮素通过矿化途径进入水体,进而增加三峡水体营养负荷。 Abstract:Objective The process of soil nitrogen mineralization in the bank zone of the Three Gorges Reservoir has a significant impact on water eutrophication and ecological security of the Three Gorges reservoir. However, the response and driving factors of soil nitrogen mineralization to warming have not been paid attention. Method A total of 108 topsoils were collected from the riparian area (elevation 145-155 m, 155-165 m, 165-175 m) and the non-flooded area (elevation 175-185m) of the Three Gorges Reservoir bank zone in nine sections of the Yangtze river. The soils were incubated at 15, 22, 29 and 36℃ for 28 days. The contents of soil ammonium nitrogen and nitrate nitrogen before and after incubation were measured, and the net ammoniation rate, net nitrification rate and net nitrogen mineralization rate and their response to warming were calculated. Result The results showed that the soil net nitrification rate and net nitrogen mineralization rate in the reservoir bank were significantly positively correlated with the elevation under the four temperatures (P < 0.05), but the net ammoniation rate had no significant difference between the elevations (P > 0.05). In general, the temperature sensitivity (Q10) of the net nitrogen mineralization rate in the reservoir bank is between 0.62 and 3.21, and the soil net nitrogen mineralization in the riparian area is more sensitive to warming than that in the non-flooded area. Rainfall is the common driving factor of Q10 change in the riparian area and non-flooded area. In addition, Q10 in the riparian area was significantly negatively correlated with elevation, pH value, annual precipitation, microbial biomass carbon (P < 0.05) and the distance to the Three Gorges Dam (P < 0.01). Conclusion Therefore, it is expected more nitrogen in the riparian area will enter the water through mineralization, thus increasing the eutrophication load of the Three Gorges reservoir in the context of global warming. -
图 3 三峡库岸带土壤净氨化速率、净硝化速率、净氮矿化速率与水位高程的关系(n = 108)
水位高程145 m ~ 175 m为消落区;水位高程175 m ~ 185 m为非淹水区,每个点为采样点的平均水位高程,下同。
Figure 3. Relationship of soil net ammonification rate, net nitrification rate, and net nitrogen mineralization rate with the bank zone altitude of the Three Gorges Reservoir Area (n = 108)
图 5 消落区(a)和未淹水区(b)净氮矿化Q10与土壤、环境因子的相关性
SOC:总有机碳,MBC:微生物生物量碳,DOC:溶解性有机碳,CN:碳氮比,MAP:年均降水量,MAT:年均温,Clay:黏粒含量,Silt:粉粒含量,Sand:砂砾含量,BD:土壤容重,TC:总碳,TN:总氮,Slope:库岸带坡度,Distance:采样点到三峡大坝的距离,AGB:地上植物生物量,WL:库岸带高程。
Figure 5. Correlation of Q10 of net nitrogen mineralization rate in riparian area (a) and non-flooding area (b) with soil and environmental factors
表 1 三峡库岸带土壤特性描述性统计
Table 1. Descriptive statistics of soil characteristics in the bank zone of the Three Gorges Reservoir
土壤指标
Soil index样本数
Number最小值
Minimum最大值
Maximum平均值
Mean标准差
Std. Deviation变异系数(%)
Coefficient of variationSOC (g kg–1) 108 3.79 61.59 23.07 10.51 45.55 TN (g kg–1) 108 0.39 3.86 1.34 0.58 43.15 C∶N 108 5.86 44.14 18.73 8.92 47.61 pH 108 7.07 8.38 7.75 0.31 4.08 NH4-N (mg kg–1) 108 7.55 41.70 16.01 7.00 43.75 NO3-N (mg kg–1) 108 2.08 44.94 11.80 8.91 75.48 MBC (mg kg–1) 108 45.52 1181.32 439.62 19.53 4.44 DOC (mg kg–1) 108 25.61 355.15 102.64 6.36 6.19 BD (g cm–3) 108 0.90 1.6 1.25 0.02 1.60 Clay (%) 108 9.0 48.0 33.0 0.60 1.81 Sand (%) 108 8.0 69.0 31.0 1.39 4.48 AGB (g m–2) 108 39.39 519.73 178.98 8.45 4.72 注:SOC:土壤有机碳, TN:总氮,碳氮比:C:N,铵态氮:NH4-N,硝态氮:NO3-N,MBC:微生物量碳,DOC:溶解性有机碳,BD:容重,Clay:粘粒,Sand:砂砾,AGB:地上生物量。 表 2 消落区和非淹水区土壤性质
Table 2. Soil properties in the riparian area and non-flooding area
采样点
Site区域
Region样本数
Number土壤有机碳
SOC
(g kg–1)总氮
TN
(g kg–1)碳氮比
C∶NpH 微生物量碳
MBC
(mg kg–1)溶解性有机碳
DOC
(mg kg–1)容重
BD
(g cm–3)粘粒
Clay
(%)砂砾
Sand
(%)地上生物量
AGB
(g m–2)WB WLF 9 15.9 ± 1.6 1.3 ± 0.2 14.7 ± 1.9 7.90 ± 0.09 410.5 ± 58.4 114.7 ± 4.3 1.33 ± 0.81 26.2 ± 1.1 42.7 ± 4.2 187.6 ± 78.4 NF 3 14.6 ± 1.4 1.8 ± 0.1 10.6 ± 0.4 7.98 ± 0.01 430.3 ± 129.4 134.9 ± 23.8 1.23 ± 0.04 31.7 ± 1.8 31.7 ± 1.5 202.5 ± 85.5 RX WLF 9 17.9 ± 1.1 1.6 ± 0.1 14.0 ± 0.5 7.76 ± 0.05 376.7 ± 59.1 111.6 ± 22.6 1.34 ± 0.55 36.0 ± 1.2 12.6 ± 1.1 224.7 ± 55.2 NF 3 37.1 ± 7.8 3.1 ± 0.6 12.9 ± 1.3 7.70 ± 0.14 714.8 ± 125.8 50.3 ± 6.4 1.25 ± 0.18 32.7 ± 1.3 23.6 ± 2.9 258.6 ± 85.5 PX WLF 9 16.7 ± 1.6 1.6 ± 0.1 13.0 ± 0.6 7.54 ± 0.03 400.9 ± 58.2 215.9 ± 26.8 1.21 ± 0.05 33.8 ± 1.6 31.1 ± 4.4 140.8 ± 90.1 NF 3 15.7 ± 3.4 1.6 ± 0.4 10.9 ± 0.7 7.68 ± 0.02 355.6 ± 207.2 223.9 ± 35.5 1.21 ± 0.04 23.3 ± 3.5 55.7 ± 7.5 142.6 ± 73.5 DN WLF 9 36.2 ± 3.5 1.6 ± 0.3 28.6 ± 3.2 7.57 ± 0.04 555.5 ± 30.5 78.2 ± 11.1 1.27 ± 0.04 39.0 ± 1.1 16.2 ± 8.0 120.9 ± 49.2 NF 3 24.2 ± 4.7 1.4 ± 0.3 23.2 ± 3.6 7.50 ± 0.09 460.2 ± 109.9 34.9 ± 3.7 1.21 ± 0.02 36.7 ± 3.5 24.0 ± 0.8 215.2 ± 8.5 TZ WLF 9 10.8 ± 1.4 1.2 ± 0.1 9.9 ± 0.74 7.61 ± 0.08 239.7 ± 52.2 111.6 ± 22.6 1.34 ± 0.45 31.3 ± 1.8 43.7 ± 3.2 143.7 ± 79.9 NF 3 17.1 ± 4.9 1.6 ± 0.8 10.9 ± 0.9 7.65 ± 0.08 460.9 ± 43.8 50.4 ± 6.4 1.46 ± 0.08 30.0 ± 2.6 51.7 ± 2.7 236.7 ± 64.6 XX WLF 9 17.7 ± 1.7 1.7 ± 0.2 10.9 ± 0.31 7.22 ± 0.03 448.6 ± 70.6 61.4 ± 5.5 1.29 ± 0.03 37.0 ± 1.3 35.1 ± 2.6 124.3 ± 49.3 NF 3 12.7 ± 2.9 1.4 ± 0.5 10.1 ± 5.5 7.22 ± 0.05 469.3 ± 198.1 55.6 ± 11.5 1.31 ± 0.07 34.0 ± 3.1 43.33 ± 4.9 126.3 ± 55.3 UP WLF 9 8.6 ± 0.7 0.7 ± 0.1 31.7 ± 2.7 8.14 ± 0.03 356.1 ± 35.8 78.2 ± 10.0 1.12 ± 0.06 30.4 ± 2.8 21.3 ± 2.8 285.2 ± 120.3 NF 3 9.2 ± 0.9 0.6 ± 0.1 29.1 ± 1.3 8.23 ± 0.07 736.8 ± 37.2 34.9 ± 3.7 1.11 ± 0.01 31.3 ± 3.80 29.0 ± 8.0 365.2 ± 87.3 MID WLF 9 10.2 ± 1.3 1.0 ± 0.13 20.5 ± 1.6 7.93 ± 0.04 446.1 ± 51.9 58.6 ± 9.1 1.11 ± 0.05 28.3 ± 1.4 36.6 ± 3.1 146.1 ± 44.1 NF 3 7.8 ± 0.6 0.8 ± 0.07 10.9 ± 0.2 7.72 ± 0.033 518.1 ± 5.3 38.1 ± 8.4 0.9 ± 0.01 32.7 ± 3.2 45.0 ± 7.8 150.1 ± 46.6 LOW WLF 9 12.1 ± 0.9 1.1 ± 0.06 18.3 ± 1.1 7.43 ± 0.03 431.7 ± 42.3 148.5 ± 11.6 1.3 ± 0.04 36.1 ± 1.1 24.8 ± 3.7 136.7 ± 9.7 NF 3 10.8 ± 0.2 1.2 ± 0.11 16.4 ± 1.1 7.43 ± 0.03 703.1 ± 270.5 128.9 ± 12.9 1.4 ± 0.03 43.7 ± 2.2 23.3 ± 3.3 158.1 ± 87.6 注:WB:五步河;LX:龙溪河;WJ:乌江;PX:彭溪河;DN:大宁河;TZ:童庄河;XX:香溪河;UP, MID和LOW分别表示长江上、中、下游。WLF表示消落区,NF表示非淹水区。 表 3 不同生态系统土壤净矿化速率的Q10
Table 3. Q10 of soil net mineralization rate in different ecosystems
序号
Number生态系统
EcosystemQ 10均值
Mean Q 10参考文献
Reference1 湿地 1.25 ~ 1.43 赵琦齐等[38] 2 冻原 6.97 ~ 197.7 Mukai等[40] 3 森林 0.56 ~ 0.72 Mikan等[39] 4 湿地 1.05 ~ 4.44 高俊琴等[45] 5 草原 2.36 ~ 2.62 Liu等[46] 6 农田 1.15 ~ 1.47 Fu等[47] 7 农田 2.67 ~ 3.15 Miller等[48] 8 农业 1.66 ~ 1.85 Lei等[49] 9 湿地 1.38 ~ 2.31 赵春宇等[36] 10 三峡库岸带 0.62 ~ 3.21 本研究 -
[1] Gao Q, Li Y, Cheng Q, et al. Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013[J]. Water research, 2016, 92: 262 − 274. doi: 10.1016/j.watres.2015.12.055 [2] Bao Y, Gao P, He X. The water-level fluctuation zone of Three Gorges Reservoir—a unique geomorphological unit[J]. Earth-Science Reviews, 2015, 150: 14 − 24. doi: 10.1016/j.earscirev.2015.07.005 [3] Ye C, Butler O M, Chen C, et al. Shifts in characteristics of the plant-soil system associated with flooding and revegetation in the riparian zone of Three Gorges Reservoir, China[J]. Geoderma, 2020, 361: 114015. doi: 10.1016/j.geoderma.2019.114015 [4] 何立平, 兰 波, 陆 伟, 等. 三峡库区消落带紫色潮土结合态氮转化过程[J]. 环境化学, 2020, 39(8): 2245 − 2252. [5] 阎丹丹, 鲍玉海, 贺秀斌, 等. 三峡水库蓄水后长江干支流及消落带泥沙颗粒特征分析[J]. 水土保持学报, 2014, 28(4): 289r292. [6] 林俊杰, 杨振宇, 刘 丹, 等. 干湿交替下三峡支流消落带沉积物粒径组成及氮分布特征[J]. 土壤学报, 2016, 53(3): 602 − 610. doi: 10.11766/trxb201507030082 [7] Tang Q, Collins A L, Wen A, et al. Particle size differentiation explains flow regulation controls on sediment sorting in the water-level fluctuation zone of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 633: 1114 − 1125. doi: 10.1016/j.scitotenv.2018.03.258 [8] 何立平, 刘 丹, 于志国, 等. 三峡库区干支流落干期消落带土壤可转化态氮含量及分布特征[J]. 环境科学, 2016, 37(3): 950 − 954. [9] 何立平, 付 川, 谢 昆, 等. 三峡库区万州段不同类型消落带土壤磷形态贮存特征[J]. 长江流域资源与环境, 2014, 23(4): 534 − 541. doi: 10.11870/cjlyzyyhj201404013 [10] Zhu K W, Chen Y C, Zhang S, et al. Vegetation of the water-level fluctuation zone in the Three Gorges Reservoir at the initial impoundment stage[J]. Global Ecology and Conservation, 2020, 21: e00866. doi: 10.1016/j.gecco.2019.e00866 [11] 常 超, 谢宗强, 熊高明, 等. 三峡水库蓄水对消落带土壤理化性质的影响[J]. 自然资源学报, 2011, 26(7): 1236 − 1244. doi: 10.11849/zrzyxb.2011.07.016 [12] Risch A C, Zimmermann S, Moser B, et al. Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties[J]. Global Change Biology, 2020, 26(12): 7173 − 7185. doi: 10.1111/gcb.15308 [13] 林俊杰, 刘 丹, 张 帅, 等. 淹水-落干与季节性温度升高耦合过程对消落带沉积物氮矿化影响[J]. 环境科学, 2017, 38(2): 555 − 562. [14] Studt J E, McDaniel M D, Tejera M D, et al. Soil net nitrogen mineralization and leaching under Miscanthus × giganteus and Zea mays[J]. GCB Bioenergy, 2021, 13(9): 1545 − 1560. doi: 10.1111/gcbb.12875 [15] Jia J, Bai J, Gao H, et al. Different effects of NaCl and Na2SO4 on soil net nitrogen mineralization in coastal wetlands[J]. Ecotoxicology and Environmental Safety, 2020, 199: 110678. doi: 10.1016/j.ecoenv.2020.110678 [16] Risch AC, Zimmermann S, Ochoa-Hueso R, et al. Soil net nitrogen mineralisation across global grasslands[J]. Nature Communications, 2019, 10(1): 4981. doi: 10.1038/s41467-019-12948-2 [17] Ye C, Cheng X, Liu W, et al. Revegetation impacts soil nitrogen dynamics in the water level fluctuation zone of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2015, 517: 76 − 85. doi: 10.1016/j.scitotenv.2015.02.068 [18] Zha Y, Faeflen S W, Zhou X, et al. Redox effect on carbon and nitrogen mineralization in the drawdown zone of the Three Gorges Reservoir[J]. International Journal of Environmental Science and Technology, 2022: 1 − 12. [19] 林俊杰, 张 帅, 刘 丹, 等. 季节性温度升高对落干期消落带土壤氮矿化影响[J]. 环境科学, 2016, 37(2): 697 − 702. [20] Lin J, Yan C, Liu D, et al. Dissolved Inorganic Nitrogen Input via Net Nitrogen Mineralization under Antibiotics and Warming from the Water Level Fluctuation Zone of a Three Gorges Tributary[J]. Water, 2021, 13(18): 2502. doi: 10.3390/w13182502 [21] Chen X, Zhang S, Liu D, et al. Nutrient inputs from the leaf decay of Cynodon dactylon (L. ) Pers in the water level fluctuation zone of a Three Gorges tributary[J]. Science of the Total Environment, 2019, 688: 718 − 723. doi: 10.1016/j.scitotenv.2019.06.357 [22] 赵宗慈, 罗 勇, 黄建斌. 预估21世纪全球变暖在历史上的地位[J/OL]. 气候变化研究进展, https://kns.cnki.net/kcms/detail/11.5368.P. 20220426.1350.004.html [23] 王若瑜, 谭云廷, 程炳岩, 等. 三峡库区气温变化高精度区域气候模式模拟与预估[J]. 气象科技, 2017, 45(3): 469 − 476 + 491. [24] Song Z, Liang S, Feng L, et al. Temperature changes in three gorges reservoir area and linkage with three gorges project[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(9): 4866 − 4879. doi: 10.1002/2016JD025978 [25] 张天宇, 陈正洪, 孙 佳, 等. 三峡库区近百年来气温变化特征[J]. 长江流域资源与环境, 2012, 21(S2): 138 − 144. [26] 鲍士旦: 土壤农化分析[M]: 北京: 中国农业出版社, 2000. [27] 易小琳, 李酉开, 韩琅丰. 紫外分光光度法测定土壤硝态氮[J]. 土壤通报, 1983, (6): 35 − 40. [28] 宋良翠, 马维伟, 李 广, 等. 水分对尕海湿地退化演替土壤氮矿化的影响. 干旱区研究, 2022, 39(1): 165-175. [29] Liu Y, Wang C, Xu L, et al. Effect of grazing exclusion on the temperature sensitivity of soil net nitrogen mineralization in the Inner Mongolian grasslands[J]. European Journal of Soil Biology, 2020, 97: 103171. doi: 10.1016/j.ejsobi.2020.103171 [30] 高建梅, 董丽媛, 胡 古, 等. 哀牢山中山湿性常绿阔叶林土壤氮转化的海拔效应[J]. 生态学杂志, 2011, 30(10): 2149 − 2154. [31] 刘志梅, 吴胜军, 梁 震, 等. 三峡库区消落带土壤氮矿化及影响因素研究进展[J]. 中国农业科技导报, 2017, 19(11): 81. [32] Ye C, Cheng X, Zhang Y, et al. Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir[J], China. Ecological Engineering, 2012, 38(1): 37-44. [33] 郭 燕, 杨 邵, 沈雅飞, 等. 三峡库区消落带现存草本植物组成与生态位[J]. 应用生态学报, 2018, 29(11): 3559 − 3568. [34] 王晓锋, 李贤祥, 刘婷婷, 等. 基于 CiteSpace 的三峡库区消落带研究热点与进展[J]. 生态科学, 2022, 41(1): 249. [35] Guo X, Drury C F, Yang X, et al. The extent of soil drying and rewetting affects nitrous oxide emissions, denitrification, and nitrogen mineralization[J]. Soil Science Society of America Journal, 2014, 78(1): 194 − 204. doi: 10.2136/sssaj2013.06.0219 [36] 赵春宇, 江志坚, 吴云超, 等. 大亚湾湿地沉积物氮矿化特征及影响因素探究[J]. 中国环境科学, 2021, 41(10): 4843 − 4849. doi: 10.3969/j.issn.1000-6923.2021.10.042 [37] 于芳芳, 李法云, 贾庆宇. 温度和水分对辽河保护区典型湿地土壤氮矿化的影响[J]. 生态科学, 2019, 38(6): 98 − 105. [38] 赵琦齐. 太湖湖滨带湿地土壤氮矿化动态研究[D]. 南京: 南京林业大学; 2011. [39] Mikan C J, Schimel J P, Doyle A P. Temperature controls of microbial respiration in arctic tundra soils above and below freezing[J]. Soil biology and biochemistry, 2002, 34(11): 1785 − 1795. doi: 10.1016/S0038-0717(02)00168-2 [40] Mukai M, Mori T, Aiba Si, et al. Nitrogen mineralization rates of the soils incubated under different temperatures from different elevations along an environmental gradient on Yakushima Island[J]. Ecological Research, 2020, 35(2): 428 − 438. doi: 10.1111/1440-1703.12092 [41] 吴建国, 韩 梅, 苌 伟, 等. 祁连山中部高寒草甸土壤氮矿化及其影响因素研究[J]. 草业学报, 2007, 16(6): 39 − 46. [42] 宋良翠, 马维伟, 李 广, 等. 温度变化对尕海湿地不同退化梯度土壤氮矿化的影响[J]. 草业学报, 2021, 30(9): 27 − 37. doi: 10.11686/cyxb2020347 [43] Zhang X Y, Li Q W, Gao J Q, et al. Effects of rainfall amount and frequency on soil nitrogen mineralization in Zoigê alpine wetland[J]. European Journal of Soil Biology, 2020, 97: 103170. doi: 10.1016/j.ejsobi.2020.103170 [44] 王 鹏, 余小芳, 熊小英, 等. 干化-干湿转化对鄱阳湖湿地土壤氮矿化的影响[J]. 环境科学学报, 2019, 39(11): 3906 − 3915. [45] 高俊琴, 欧阳华, 张 锋, 等. 若尔盖高寒湿地土壤氮矿化对温度和湿度的响应[J]. 湿地科学, 2008, 6(2): 229 − 234. [46] Liu Y, He N, Wen X, et al. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems[J]. Agriculture, Ecosystems and Environment, 2016, 215: 40 − 46. doi: 10.1016/j.agee.2015.09.012 [47] Fu H, Duan Y, Zhu P, et al. Potential N mineralization and availability to maize in black soils in response to soil fertility improvement in Northeast China[J]. Journal of Soils and Sediments, 2021, 21(2): 905 − 913. doi: 10.1007/s11368-020-02794-x [48] Miller KS, Geisseler D. Temperature sensitivity of nitrogen mineralization in agricultural soils[J]. Biology and Fertility of Soils, 2018, 54(7): 853 − 860. doi: 10.1007/s00374-018-1309-2 [49] Lei L, McDonald L M. Soil Moisture and Temperature Effects on Nitrogen Mineralization in a High Tunnel Farming System[J]. Communications in Soil Science and Plant Analysis, 2019, 50(17): 2140 − 2150. doi: 10.1080/00103624.2019.1654503 [50] 朱剑兴, 王秋凤, 何念鹏, 等. 内蒙古不同类型草地土壤氮矿化及其温度敏感性[J]. 生态学报, 2013, 33(19): 6320 − 6327. [51] 徐 丽, 于书霞, 何念鹏, 等. 青藏高原高寒草地土壤碳矿化及其温度敏感性[J]. 植物生态学报, 2013, 37(11): 988. [52] Kader M, Sleutel S, Begum S A, et al. Nitrogen mineralization in sub‐tropical paddy soils in relation to soil mineralogy, management, pH, carbon, nitrogen and iron contents[J]. European Journal of Soil Science, 2013, 64(1): 47 − 57. doi: 10.1111/ejss.12005 [53] Liu Y, Wang C, He N, et al. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms[J]. Global Change Biology, 2017, 23(1): 455 − 464. doi: 10.1111/gcb.13372 -