留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水力侵蚀过程的土壤有机碳变化驱动机制研究进展

齐瑜洁 黄金权 李威闻 刘小岚 刘纪根 毛治超

齐瑜洁, 黄金权, 李威闻, 刘小岚, 刘纪根, 毛治超. 基于水力侵蚀过程的土壤有机碳变化驱动机制研究进展[J]. 土壤通报, 2023, 54(5): 1196 − 1204 doi: 10.19336/j.cnki.trtb.2022052302
引用本文: 齐瑜洁, 黄金权, 李威闻, 刘小岚, 刘纪根, 毛治超. 基于水力侵蚀过程的土壤有机碳变化驱动机制研究进展[J]. 土壤通报, 2023, 54(5): 1196 − 1204 doi: 10.19336/j.cnki.trtb.2022052302
QI Yu-jie, HUANG Jin-quan, LI Wei-wen, LIU Xiao-lan, LIU Ji-gen, MAO Zhi-chao. Research Progress on Driving Mechanism of Soil Organic Carbon Change based on Hydraulic Erosion Process[J]. Chinese Journal of Soil Science, 2023, 54(5): 1196 − 1204 doi: 10.19336/j.cnki.trtb.2022052302
Citation: QI Yu-jie, HUANG Jin-quan, LI Wei-wen, LIU Xiao-lan, LIU Ji-gen, MAO Zhi-chao. Research Progress on Driving Mechanism of Soil Organic Carbon Change based on Hydraulic Erosion Process[J]. Chinese Journal of Soil Science, 2023, 54(5): 1196 − 1204 doi: 10.19336/j.cnki.trtb.2022052302

基于水力侵蚀过程的土壤有机碳变化驱动机制研究进展

doi: 10.19336/j.cnki.trtb.2022052302
基金项目: 国家自然科学基金项目(U19A2047, 42077062)资助
详细信息
    作者简介:

    齐瑜洁(1998−),女,陕西宝鸡人,硕士研究生,研究方向:土壤侵蚀与碳循环。E-mail: qyj15129772806@163.com

    通讯作者:

    E-mail: jinquan_cky@163.com

  • 中图分类号: Q142.3

Research Progress on Driving Mechanism of Soil Organic Carbon Change based on Hydraulic Erosion Process

  • 摘要: 土壤有机碳库是陆地生态系统中影响全球碳循环格局的重要组成部分,有机碳的品质与数量成为决定土壤碳汇形成和温室气体排放的关键因素,准确把握水力侵蚀各阶段有机碳组分动态特征与变化机制有助于科学评估土壤侵蚀影响土壤碳源汇的净效应。在阐述有机碳及其组分在分散剥离-运移-沉积基本过程中的主要动态特征与运移机制的基础上,对相关研究进展进行总结,提出未来研究应从土壤团聚体入手,在定性及定量两个层面进一步深入探索水力侵蚀作用下有机碳选择性迁移与矿化机制,并将研究的重点放在不同侵蚀过程中有机碳组分与功能微生物的相互作用上来,为准确评估碳动态提供技术支撑的突破口。
  • 图  1  土壤有机碳随水力侵蚀迁移路径(注:借鉴Xiao等[22]论文图,有部分修改内容。POC:颗粒态有机碳;DOC:可溶性有机碳;LFOC游离轻组分有机碳。)

    Figure  1.  Soil organic carbon transport pathways with hydraulic erosion (Note: Refer to the figure in Xiao et al. [22], with some modifications. POC: Particulate Organic Carbon. DOC: Dissolved Organic Carbon. LFOC: Light Fraction Organic Carbon.)

    图  2  团聚体受水蚀作用迁移动态及相关碳动态

    Figure  2.  Migration dynamics and carbon dynamics of aggregates subjected to water erosion

  • [1] Wiesmeier M, Urbanski L, Hobley E, et al. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales[J]. Geoderma, 2019, 333(5): 149 − 162.
    [2] Nijs E, Cammeraat E. The stability and fate of soil organic carbon during the transport phase of soil erosion[J]. Earth-Science Reviews, 2020, 201(1): 103067.
    [3] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623 − 1627. doi: 10.1126/science.1097396
    [4] Lal R. Soil erosion and the global carbon budget[J]. Environment International, 2003, 29(4): 437 − 450. doi: 10.1016/S0160-4120(02)00192-7
    [5] Hemelryck H V, Govers G, Oost K V, et al. Evaluating the impact of soil redistribution on the in situ mineralization of soil organic carbon[J]. Earth Surface Processes and Landforms, 2011, 36(4): 427 − 438. doi: 10.1002/esp.2055
    [6] Li H, Zhu H, Wei X, et al. Soil erosion leads to degradation of hydraulic properties in the agricultural region of Northeast China[J]. Agriculture, Ecosystems & Environment, 2021, 314: 107388.
    [7] Doetterl S, Berhe A A, Nadeu E, et al. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes[J]. Earth-Science Reviews, 2016, 154: 102 − 122. doi: 10.1016/j.earscirev.2015.12.005
    [8] Rajan K, Natarajan A, Kumar K S A, et al. Soil organic carbon - the most reliable indicator for monitoring land degradation by soil erosion[J]. Current ence, 2010, 99(6): 823 − 827.
    [9] Jacinthe P A, Lal R, Owens L B, et al. Transport of labile carbon in runoff as affected by land use and rainfall characteristics[J]. Soil and Tillage Research, 2004, 77(2): 111 − 123. doi: 10.1016/j.still.2003.11.004
    [10] Wang X, Cammeraat E, López C D, et al. Mineralization of eroded organic carbon transported from a loess soil into water[J]. Soil Science Society of America Journal, 2014, 78(4): 1362 − 1367. doi: 10.2136/sssaj2013.10.0443
    [11] García‐Ruiz J M, Beguería S, Lana‐Renault N, et al. Ongoing and emerging questions in water erosion studies[J]. Land Degradation & Development, 2016, 28(1): 5 − 21.
    [12] Lal R. Accelerated Soil erosion as a source of atmospheric CO2[J]. Soil and Tillage Research, 2019, 188: 35 − 40. doi: 10.1016/j.still.2018.02.001
    [13] Polyakov V O, Lal R. Soil organic matter and CO2 emission as affected by water erosion on field runoff plots[J]. Geoderma, 2008, 143(1-2): 216 − 222. doi: 10.1016/j.geoderma.2007.11.005
    [14] Quinton J N, Govers G, Oost K V, et al. The impact of agricultural soil erosion on biogeochemical cycling[J]. Nature Geoscience, 2010, 3(5): 311 − 314. doi: 10.1038/ngeo838
    [15] Stallard R F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial[J]. Global Biogeochemical Cycles, 1998, 12(2): 231 − 257. doi: 10.1029/98GB00741
    [16] 方华军, 杨学明, 张晓平, 等. 土壤侵蚀对农田中土壤有机碳的影响[J]. 地理科学进展, 2004, 23(2): 77 − 87. doi: 10.3969/j.issn.1007-6301.2004.02.010
    [17] Wang L, Yen H, Wang X, et al. Deposition- and transport-dominated erosion regime effects on the loss of dissolved and sediment-bound organic carbon: Evaluation in a cultivated soil with laboratory rainfall simulations[J]. Science of The Total Environment, 2021, 750: 141717. doi: 10.1016/j.scitotenv.2020.141717
    [18] Hu Y, Berhe A A, Fogel M L, et al. Transport-distance specific soc distribution: Does it skew erosion induced C fluxes?[J]. Biogeochemistry, 2016, 128(3): 339 − 351. doi: 10.1007/s10533-016-0211-y
    [19] Wang Y, Yang F, Qi S, et al. Estimating the effect of rain splash on soil particle transport by using a modified model: study on short hillslopes in northern China[J]. Water, 2020, 12(9): 2318. doi: 10.3390/w12092318
    [20] Yue Y, Ni J, Ciais P, et al. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China[J]. Proceedings of the National Academy of Sciences, 2016, 113(24): 6617 − 6622. doi: 10.1073/pnas.1523358113
    [21] Oost K V, Six J, Govers G, et al. Reply to letter on 'soil erosion: a carbon sink or source?' by R. Lal and D. Pimentel[J]. Science, 2008, 319: 1041 − 1042.
    [22] Xiao H, Li Z, Chang X, et al. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion[J]. Geoderma, 2018, 329: 73 − 81. doi: 10.1016/j.geoderma.2018.05.018
    [23] Wei S, Zhang X, McLaughlin N B, et al. Effect of breakdown and dispersion of soil aggregates by erosion on soil CO2 emission[J]. Geoderma, 2016, 264: 238 − 243. doi: 10.1016/j.geoderma.2015.10.021
    [24] Zheng J Y, Zhao J S, Shi Z H, et al. Soil aggregates are key factors that regulate erosion-related carbon loss in citrus orchards of southern China: Bare land vs. grass-covered land[J]. Agriculture, Ecosystems & Environment, 2021, 309: 107254.
    [25] Nie X J, Zhang J H, Cheng J X, et al. Effect of soil redistribution on various organic carbons in a water- and tillage-eroded soil[J]. Soil and Tillage Research, 2016, 155: 1 − 8. doi: 10.1016/j.still.2015.07.003
    [26] Müller-Nedebock D, Chivenge P, Chaplot V. Selective organic carbon losses from soils by sheet erosion and main controls[J]. Earth Surface Processes and Landforms, 2016, 41(10): 1399 − 1408. doi: 10.1002/esp.3916
    [27] Qiu L, Zhu H, Liu J, et al. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment[J]. Agriculture, Ecosystems & Environment, 2021, 307: 107232.
    [28] Berhe A A, Harte J, Harden J W, et al. The significance of the erosion-induced terrestrial carbon sink[J]. BioScience, 2007, 57(4): 337 − 346. doi: 10.1641/B570408
    [29] Mariappan S, Hartley I P, Cressey E L, et al. Soil burial reduces decomposition and offsets erosion‐induced soil carbon losses in the Indian Himalaya[J]. Global Change Biology, 2022, 28: 1643 − 1658. doi: 10.1111/gcb.15987
    [30] Rumpel C, Kögel-Knabner I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2010, 338(1-2): 143 − 158.
    [31] Berhe A A. Decomposition of organic substrates at eroding vs. depositional landform positions[J]. Plant and Soil, 2011, 350(1-2): 261 − 280.
    [32] Wang X, Cammeraat E, Cerli C, et al. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition[J]. Soil Biology and Biochemistry, 2014, 72: 55 − 65. doi: 10.1016/j.soilbio.2014.01.018
    [33] Beguería S, Angulo-Martínez M, Gaspar L, et al. Detachment of soil organic carbon by rainfall splash: Experimental assessment on three agricultural soils of Spain[J]. Geoderma, 2015, 245-246: 21 − 30. doi: 10.1016/j.geoderma.2015.01.010
    [34] Bissonnais Y L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology[J]. European Journal of Soil Science, 1996, 47(4): 425 − 437. doi: 10.1111/j.1365-2389.1996.tb01843.x
    [35] Chaplot V, Cooper M. Soil aggregate stability to predict organic carbon outputs from soils[J]. Geoderma, 2015, 243-244: 205 − 213. doi: 10.1016/j.geoderma.2014.12.013
    [36] 王军光, 李朝霞, 蔡崇法, 等. 坡面水流中不同层次红壤团聚体剥蚀程度研究[J]. 农业工程学报, 2012, 28(19): 78 − 84. doi: 10.3969/j.issn.1002-6819.2012.19.011
    [37] Li H, Liu G, Gu J, et al. Response of soil aggregate disintegration to the different content of organic carbon and its fractions during splash erosion[J]. Hydrological Processes, 2020, 35(2): e14060.
    [38] Zhu Y, Wang D, Wang X, et al. Aggregate-associated soil organic carbon dynamics as affected by erosion and deposition along contrasting hillslopes in the Chinese Corn Belt[J]. Catena, 2021, 199: 105106. doi: 10.1016/j.catena.2020.105106
    [39] Wei S, Zhang X, McLaughlin N B, et al. Impact of soil water erosion processes on catchment export of soil aggregates and associated SOC[J]. Geoderma, 2017, 294: 63 − 69. doi: 10.1016/j.geoderma.2017.01.021
    [40] Liu L, Li Z, Xiao H, et al. The transport of aggregates associated with soil organic carbon under the rain‐induced overland flow on the Chinese Loess Plateau[J]. Earth Surface Processes and Landforms, 2019, 44(10): 1895 − 1909. doi: 10.1002/esp.4618
    [41] Jiang Y, Zheng F, Wen L, et al. Effects of sheet and rill erosion on soil aggregates and organic carbon losses for a Mollisol hillslope under rainfall simulation[J]. Journal of Soils and Sediments, 2018, 19(1): 467 − 477.
    [42] Hu Y, Kuhn N J. Aggregates reduce transport distance of soil organic carbon: are our balances correct?[J]. Biogeosciences, 2014, 11(22): 6209 − 6219. doi: 10.5194/bg-11-6209-2014
    [43] Liu L, Li Z, Li Z J, et al. Effect of aggregate breakdown on the unevenly enriched organic carbon process in sediments under a rain-induced overland flow[J]. Soil and Tillage Research, 2020, 204: 104752. doi: 10.1016/j.still.2020.104752
    [44] Zhang X, Li Z, Tang Z, et al. Effects of water erosion on the redistribution of soil organic carbon in the hilly red soil region of southern China[J]. Geomorphology, 2013, 197(8): 137 − 144.
    [45] Wang Z, Govers G, Oost K V, et al. Soil organic carbon mobilization by interrill erosion: Insights from size fractions[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 348 − 360. doi: 10.1029/2012JF002430
    [46] Kinnell P I A. Raindrop-impact-induced erosion processes and prediction: a review[J]. Hydrological Processes, 2005, 19(14): 2815 − 2844. doi: 10.1002/hyp.5788
    [47] 郑粉莉. 黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究[J]. 土壤学报, 1998, 35(1): 95 − 103. doi: 10.3321/j.issn:0564-3929.1998.01.014
    [48] 杨明义, 田均良. 坡面侵蚀过程定量研究进展[J]. 地球科学进展, 2000, 15(6): 649 − 653. doi: 10.3321/j.issn:1001-8166.2000.06.005
    [49] 赵鹏志, 陈祥伟, 王恩姮. 黑土坡耕地有机碳及其组分累积-损耗格局对耕作侵蚀与水蚀的响应[J]. 应用生态学报, 2017, 28(11): 3634 − 3642. doi: 10.13287/j.1001-9332.201711.024
    [50] Jiang J, Li Z, Xiao H, et al. Labile organic matter plays a more important role than the autotrophic bacterial community in regulating microbial CO2 fixation in an eroded watershed[J]. Land Degradation & Development, 2018, 29(12): 4415 − 4423.
    [51] Maïga-Yaleu S B, Chivenge P, Yacouba H, et al. Impact of sheet erosion mechanisms on organic carbon losses from crusted soils in the Sahel[J]. Catena, 2015, 126: 60 − 67. doi: 10.1016/j.catena.2014.11.001
    [52] Polyakov V O, Lal R. Soil erosion and carbon dynamics under simulated rainfall[J]. Soil Science, 2004, 169(8): 590 − 599. doi: 10.1097/01.ss.0000138414.84427.40
    [53] 董 雪, 王春燕, 黄 丽, 等. 侵蚀程度对不同粒径团聚体中养分含量和红壤有机质稳定性的影响[J]. 土壤学报, 2013, 50(3): 525 − 533. doi: 10.11766/trxb201207260303
    [54] Elisabet N, Joris d V, María M-M, et al. Exploring particle size distribution and organic carbon pools mobilized by different erosion processes at the catchment scale[J]. Journal of Soils & Sediments, 2011, 11(4): 667 − 678.
    [55] Hu Y, Kuhn N J. Erosion-induced exposure of SOC to mineralization in aggregated sediment[J]. Catena, 2016, 137: 517 − 525. doi: 10.1016/j.catena.2015.10.024
    [56] Mary B, Clivot H, Blaszczyk N, et al. Soil carbon storage and mineralization rates are affected by carbon inputs rather than physical disturbance: Evidence from a 47-year tillage experiment[J]. Agriculture, Ecosystems & Environment, 2020, 299: 106972.
    [57] Nyamadzawo G, Nyamangara J, Nyamugafata P, et al. Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe[J]. Soil And Tillage Research, 2009, 102(1): 151 − 157. doi: 10.1016/j.still.2008.08.007
    [58] Hemelryck H V, Fiener P, Oost K V, et al. The effect of soil redistribution on soil organic carbon: an experimental study[J]. Biogeosciences, 2010, 7(12): 3971 − 3986. doi: 10.5194/bg-7-3971-2010
    [59] 覃 乾, 朱世硕, 夏 彬, 等. 黄土丘陵区侵蚀坡面土壤微生物量碳时空动态及影响因素[J]. 环境科学, 2019, 40(4): 1973 − 1980. doi: 10.13227/j.hjkx.201810035
    [60] Huang J, Li Z, Nie X, et al. Microbial responses to soil rewetting in erosional and depositional environments in relation to the organic carbon dynamics[J]. Geomorphology, 2014, 204(jana1): 256 − 264.
    [61] Xiao H, Li Z, Dong Y, et al. Changes in microbial communities and respiration following the revegetation of eroded soil[J]. Agriculture, Ecosystems & Environment, 2017, 246: 30 − 37.
    [62] Wiaux F, Cornelis J T, Cao W, et al. Combined effect of geomorphic and pedogenic processes on the distribution of soil organic carbon quality along an eroding hillslope on loess soil[J]. Geoderma, 2014, 216: 36 − 47. doi: 10.1016/j.geoderma.2013.10.013
    [63] Jacinthe P A, Lal R, Kimble J M. Carbon dioxide evolution in runoff from simulated rainfall on long-term no-till and plowed soils in southwestern Ohio[J]. Soil and Tillage Research, 2002, 66(1): 23 − 33. doi: 10.1016/S0167-1987(02)00010-7
    [64] 郝旺林, 夏 彬, 许明祥. 黄土丘陵区侵蚀坡面CO2通量空间分异格局驱动机制[J]. 中国环境科学, 2021, 41(12): 5875 − 5884. doi: 10.3969/j.issn.1000-6923.2021.12.044
    [65] Hassan W, Bashir S, Ahmed N, et al. Labile organic carbon fractions, regulator of CO2 emission: effect of plant residues and water regimes[J]. Clean - Soil, Air, Water, 2016, 44(10): 1358 − 1367. doi: 10.1002/clen.201400405
    [66] Li T, Zhang H, Wang X, et al. Soil erosion affects variations of soil organic carbon and soil respiration along a slope in Northeast China[J]. Ecological Processes, 2019, 8(1): 10. doi: 10.1186/s13717-019-0164-x
    [67] Vandenbygaart A J, Kroetsch D, Gregorich E G, et al. Soil C erosion and burial in cropland[J]. Global Change Biology, 2012, 18(4): 1441 − 1452. doi: 10.1111/j.1365-2486.2011.02604.x
    [68] Lin H, Duan X, Li Y, et al. Simulating the effects of erosion on organic carbon dynamics in agricultural soils[J]. Catena, 2022, 208: 105753. doi: 10.1016/j.catena.2021.105753
    [69] Nie X, Yuan Z, Huang B, et al. Effects of water erosion on soil organic carbon stability in the subtropical China[J]. Journal of Soils and Sediments, 2019, 19(10): 3564 − 3575. doi: 10.1007/s11368-019-02305-7
    [70] Tiefenbacher A, Weigelhofer G, Klik A, et al. Antecedent soil moisture and rain intensity control pathways and quality of organic carbon exports from arable land[J]. Catena, 2021, 202: 105297. doi: 10.1016/j.catena.2021.105297
    [71] 张 雪, 李忠武, 申卫平, 等. 红壤有机碳流失特征及其与泥沙径流流失量的定量关系[J]. 土壤学报, 2012, 49(3): 465 − 473. doi: 10.11766/trxb201106170217
    [72] 聂小东, 李忠武, 王晓燕, 等. 雨强对红壤坡耕地泥沙流失及有机碳富集的影响规律研究[J]. 土壤学报, 2013, 50(5): 900 − 908. doi: 10.11766/trxb201211150468
    [73] Nie X, Li Z, Huang J, et al. Soil organic carbon loss and selective transportation under field simulated rainfall events[J]. Plos One, 2014, 9(8): 105927. doi: 10.1371/journal.pone.0105927
    [74] An J, Liu Q. Soil aggregate breakdown in response to wetting rate during the inter-rill and rill stages of erosion in a contour ridge system[J]. Catena, 2017, 157: 241 − 249. doi: 10.1016/j.catena.2017.05.027
    [75] Gao X, Hu Y, Sun Q, et al. Erosion-induced carbon losses and CO2 emissions from Loess and Black soil in China[J]. Catena, 2018, 171: 533 − 540. doi: 10.1016/j.catena.2018.08.001
    [76] Huang J, Zhang C, Cheng D, et al. Soil organic carbon mineralization in relation to microbial dynamics in subtropical red soils dominated by differently sized aggregates[J]. Open Chemistry, 2019, 17(1): 381 − 391. doi: 10.1515/chem-2019-0051
    [77] Duchicela J, Sullivan T S, Bontti E, et al. Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano[J]. Journal of Applied Ecology, 2013, 50(5): 1266 − 1273. doi: 10.1111/1365-2664.12130
    [78] Xiao H, Liu G, Zhang Q, et al. Quantifying contributions of slaking and mechanical breakdown of soil aggregates to splash erosion for different soils from the loess plateau of China[J]. Soil and Tillage Research, 2018, 178: 150 − 158. doi: 10.1016/j.still.2017.12.026
    [79] Yang H, Mo B, Zhou M, et al. Effects of plum plantation ages on soil organic carbon mineralization in the karst rocky desertification ecosystem of southwest China[J]. Forests, 2019, 10(12): 1107. doi: 10.3390/f10121107
    [80] Lal R. Soil Erosion and Gaseous Emissions[J]. Applied Sciences, 2020, 10(8): 2784. doi: 10.3390/app10082784
    [81] 刘 琪, 李宇虹, 李 哲, 等. 不同水分条件和微生物生物量水平下水稻土有机碳矿化及其影响因子特征[J]. 环境科学, 2021, 42(5): 2440 − 2448. doi: 10.13227/j.hjkx.202010105
    [82] 李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4): 544 − 552. doi: 10.3321/j.issn:0564-3929.2004.04.008
    [83] 张敬智, 马 超, 郜红建. 淹水和好气条件下东北稻田黑土有机碳矿化和微生物群落演变规律[J]. 农业环境科学学报, 2017, 36(6): 1160 − 1166. doi: 10.11654/jaes.2017-0012
    [84] Jacinthe P A, Lal R, Kimble J M. Organic carbon storage and dynamics in croplands and terrestrial deposits as influenced by subsurface tile drainage[J]. Soil Science, 2001, 166(5): 322 − 335. doi: 10.1097/00010694-200105000-00003
    [85] 贾松伟, 贺秀斌, 韦方强. 黄绵土土壤活性有机碳的侵蚀和沉积效应[J]. 水土保持通报, 2007, 27(2): 10 − 13. doi: 10.3969/j.issn.1000-288X.2007.02.003
    [86] Huang W, Hall S J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter[J]. Nature Communications, 2017, 8(1): 1774. doi: 10.1038/s41467-017-01998-z
    [87] 杜兰兰, 王志齐, 王 蕊, 等. 模拟条件下侵蚀-沉积部位土壤CO2通量变化及其影响因素[J]. 环境科学, 2016, 37(9): 3616 − 3624.
    [88] Wiaux F, Vanclooster M, Cornelis J T, et al. Factors controlling soil organic carbon persistence along an eroding hillslope on the loess belt[J]. Soil Biology and Biochemistry, 2014, 77: 187 − 196. doi: 10.1016/j.soilbio.2014.05.032
    [89] 刘士丹, 卢敬坤, 胡 宁, 等. 温度和水分对黑土有机碳矿化的影响[J]. 吉林农业大学学报, 2020, 42(5): 552 − 560. doi: 10.13327/j.jjlau.2020.4429
    [90] Berhe A A, Harden J W, Torn M S, et al. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions[J]. Journal of Geophysical Research:Biogeosciences, 2008, 113: G04039.
    [91] Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450(7167): 277 − 280. doi: 10.1038/nature06275
    [92] Ma W, Li Z, Ding K, et al. Stability of soil organic carbon and potential carbon sequestration at eroding and deposition sites[J]. Journal of Soils and Sediments, 2016, 16(6): 1705 − 1717. doi: 10.1007/s11368-016-1373-x
    [93] 朱冰冰, 李占斌, 李 鹏, 等. 草本植被覆盖对坡面降雨径流侵蚀影响的试验研究[J]. 土壤学报, 2010, 47(3): 401 − 407. doi: 10.11766/trxb200903180105
    [94] 王文欣, 庄义琳, 庄家尧, 等. 不同降雨强度下坡地覆盖对土壤有机碳流失的影响[J]. 水土保持学报, 2013, 27(4): 62 − 66. doi: 10.13870/j.cnki.stbcxb.2013.04.027
    [95] 贾松伟, 贺秀斌, 陈云明, 等. 黄土丘陵区土壤侵蚀对土壤有机碳流失的影响研究[J]. 水土保持研究, 2004, 11(4): 88 − 90. doi: 10.3969/j.issn.1005-3409.2004.04.019
    [96] Xiao P, Yao W, Shen Z, et al. Effects of shrub on runoff and soil loss at loess slopes under simulated rainfall[J]. Chinese Geographical Science, 2017, 27(4): 589 − 599. doi: 10.1007/s11769-017-0889-3
    [97] 李 灿, 曾和平. 不同空间尺度下植被覆盖对土壤有机碳流失的影响研究进展[J]. 云南大学学报:自然科学版, 2019, 41(1): 194 − 204.
    [98] 肖金强, 张志强, 武 军. 坡面尺度林地植被对地表径流与土壤水分的影响初步研究[J]. 水土保持研究, 2006, 13(5): 227 − 231. doi: 10.3969/j.issn.1005-3409.2006.05.074
    [99] 王晗生, 刘国彬, 王青宁. 流域植被整体防蚀作用及景观结构剖析[J]. 水土保持学报, 2000, 14(5): 73 − 97. doi: 10.3321/j.issn:1009-2242.2000.05.014
  • 加载中
图(2)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 录用日期:  2022-11-01
  • 修回日期:  2022-07-13
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-10-06

目录

    /

    返回文章
    返回