留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同稳定化材料对镉砷复合污染土壤稳定化修复效果研究

王一 王松 施柳 巩宗强 贾春云 李晓军 侯伟

王 一, 王 松, 施 柳, 巩宗强, 贾春云, 李晓军, 侯 伟. 不同稳定化材料对镉砷复合污染土壤稳定化修复效果研究[J]. 土壤通报, 2022, 53(5): 1203 − 1211 doi: 10.19336/j.cnki.trtb.2021102104
引用本文: 王 一, 王 松, 施 柳, 巩宗强, 贾春云, 李晓军, 侯 伟. 不同稳定化材料对镉砷复合污染土壤稳定化修复效果研究[J]. 土壤通报, 2022, 53(5): 1203 − 1211 doi: 10.19336/j.cnki.trtb.2021102104
WANG Yi, WANG Song, SHI Liu, GONG Zong-qiang, JIA Chun-yun, LI Xiao-jun, HOU Wei. Effect of Different Stabilization Materials on Stabilization and Modification of Cadmium-Arsenic Combined Contaminated Soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1203 − 1211 doi: 10.19336/j.cnki.trtb.2021102104
Citation: WANG Yi, WANG Song, SHI Liu, GONG Zong-qiang, JIA Chun-yun, LI Xiao-jun, HOU Wei. Effect of Different Stabilization Materials on Stabilization and Modification of Cadmium-Arsenic Combined Contaminated Soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1203 − 1211 doi: 10.19336/j.cnki.trtb.2021102104

不同稳定化材料对镉砷复合污染土壤稳定化修复效果研究

doi: 10.19336/j.cnki.trtb.2021102104
基金项目: 国家重点研发计划课题(2019YF D1100504)资助
详细信息
    作者简介:

    王一:王 一(1995−),男,内蒙古赤峰人,硕士研究生,主要研究方向:土壤重金属污染稳定化修复。E-mail: 1315783851@qq.com

    通讯作者:

    E-mail: lixiaojun@iae.ac.cn

    E-mail: houws d@163.com

  • 中图分类号: (X53)

Effect of Different Stabilization Materials on Stabilization and Modification of Cadmium-Arsenic Combined Contaminated Soil

  • 摘要:   目的  探究4种稳定化材料(碱性硼泥、酸性硼泥、高岭土和铁改性生物炭)对镉砷复合污染土壤高效同步稳定化修复的效果。  方法  选用碱性硼泥、酸性硼泥、高岭土和铁改性生物炭4种稳定化材料,分别以0.5%、1%、2%、5%的比例添加于镉砷复合污染土壤中进行恒温恒湿培养,研究不同稳定化材料添加对土壤pH值及镉、砷有效态含量的影响。  结果  除碱性硼泥外,其他3种材料均降低了土壤pH值,其中5%铁改性生物炭对土壤pH降低最为显著,处理21 d后土壤pH值下降了3.12个单位。5%铁改性生物炭对砷稳定效果最佳,稳定效率为57.17%,其次是5%高岭土和5%酸性硼泥,稳定效率分别为40.40%和33.37%;5%铁改性生物炭对镉稳定效果也为最佳,稳定效率为35.03%,其次是5%的碱性硼泥,稳定效率为28.20%。  结论  综合考虑土壤镉-砷的同步稳定化修复效果,铁改性生物炭的修复效果明显优于其它3种稳定材料。
  • 图  1  不同添加量稳定化修复材料对土壤pH值的影响

    (a)BM-1,(b)BM-2,(c)KL,(d)F-BC。不同大写字母表示相同处理,不同时间的差异显著;不同小写字母表示相同时间,不同处理间的差异显著(P < 0.05)。

    Figure  1.  Effects of different amounts of stabilized remediation materials on soil pH value

    图  2  BM-1、BM-2对土壤有效态As含量的影响

    (a)BM-1,(b)BM-2,大写字母表示不同时间段相同处理组间差异显著,小写字母表示相同时间段不同处理组内差异显著(P < 0.05)。

    Figure  2.  Effect of BM-1 and BM-2 on soil available As contents

    图  3  KL、F-BC对土壤有效态As含量的影响

    (a)KL,(b) F-BC,大写字母表示不同时间段相同处理组间差异显著,小写字母表示相同时间段不同处理组内差异显著(P < 0.05)。

    Figure  3.  Effect of KL and F-BC on soil available As contents

    图  4  BM-1,BM-2对土壤有效态Cd含量的影响

    (a)BM-1,(b)BM-2,大写字母表示不同时间段相同处理组间差异显著,小写字母表示相同时间段不同处理组内差异显著(P < 0.05)。

    Figure  4.  Effect of BM-1 and BM-2 on soil available Cd contents

    图  5  KL、F-BC对土壤有效态Cd含量的影响

    (a)KL,(b)F-BC,大写字母表示不同时间段相同处理组间差异显著,小写字母表示相同时间段不同处理组内差异显著(P < 0.05)。

    Figure  5.  Effect of KL and F-BC on soil available Cd contents

    表  1  稳定化修复材料性质

    Table  1.   The properties of stabilized repair materials

    修复材料
    Repaired material
    简称
    Abbreviation
    主要成分
    Main ingredient
    pHAs总量(mg kg−1)
    Total As
    Cd总量(mg kg−1)
    Total Cd
    碱性硼泥 BM-1 CaO、MgO、Ca3(PO4)2、CaSiO3 9.33 7.50
    酸性硼泥 BM-2 (NH4)HPO4、Ca3(PO4)2、Mg(OH)2、Al(OH)3 6.77 4.16
    高岭土 KL Al2Si2O5(OH)4 6.31 0.42
    铁改性生物炭 F-BC Fe2O3、Fe3O4、C 3.67 0.03
      注:−表示未检出;铁改性生物炭Cd总量为未改性前生物碳含量。
    下载: 导出CSV

    表  2  试验处理

    Table  2.   Experimental treatment

    修复材料
    Repaired material
    用量(%)
    Dosage
    0.00.51.02.05.0
    BM-1 CK 0.5BM-1 1.0BM-1 2.0BM-1 5.0BM-1
    BM-2 0.5BM-2 1.0BM-2 2.0BM-2 5.0BM-2
    KL 0.5KL 1.0KL 2.0KL 5.0KL
    F-BC 0.5F-BC 1.0F-BC 2.0F-BC 5.0F-BC
    下载: 导出CSV

    表  3  不同稳定化修复材料添加量、土壤pH值与土壤有效态As、Cd含量相关性分析

    Table  3.   Correlation analysis between the amount of different stabilized remediation materials and the contents of available As, Cd and pH in soil

    材料
    Material
    指标
    Index
    添加量
    Amount of addition
    pH有效态As
    Available As
    有效态Cd
    Available Cd
    BM-1 pH 0.935** 1
    有效态 As −0.083 −0.210 1
    有效态 Cd −0.764** −0.753** 0.086 1
    BM-2 pH −0.552* 1
    有效态 As −0.161 0.232 1
    有效态 Cd 0.355 0.251 −0.258 1
    KL pH 0.111 1
    有效态 As −0.197 0.520* 1
    有效态 Cd −0.170 −0.595** −0.586** 1
    F-BC pH −0.923** 1
    有效态 As −0.526* 0.343 1
    有效态 Cd −0.794** 0.709** 0.195 1
      注:*表示相关性显著(P < 0.05),**表示相关性极显著(P < 0.01)。
    下载: 导出CSV
  • [1] Hu W Y, Zhang Y Z, Huang B, et al. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies[J]. Chemosphere, 2017, 170: 183 − 195. doi: 10.1016/j.chemosphere.2016.12.047
    [2] 贺玉龙. 镉砷在土壤中的赋存形态及生物有效性研究[J]. 绿色科技, 2019, 10(10): 108 − 109.
    [3] 李 英, 商建英, 黄益宗, 等. 镉砷复合污染土壤钝化材料研究进展[J]. 土壤学报, 2021, 58(4): 837 − 850.
    [4] Shao X, Huang B, Zhao Y, et al. Impacts of human activities and sampling strategies on soil heavy metal distribution in a rapidly developing region of China[J]. Ecotoxicology and Environmental Safety, 2014, 104: 1 − 8. doi: 10.1016/j.ecoenv.2014.02.007
    [5] Alam M, Tokunaga S, Maekawa T. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate[J]. Chemosphere, 2001, 43(8): 1035 − 1041. doi: 10.1016/S0045-6535(00)00205-8
    [6] 李 英, 朱司航, 商建英, 等. 土壤镉和砷污染钝化修复材料及科学计量研究[J]. 农业环境科学学报, 2019, 38(9): 2011 − 2022. doi: 10.11654/jaes.2019-0601
    [7] 孙约兵, 周启星, 任丽萍. 镉超富集植物球果蔊菜对镉-砷复合污染的反应及其吸收积累特征[J]. 环境科学, 2007, 28(6): 1355 − 1360. doi: 10.3321/j.issn:0250-3301.2007.06.033
    [8] 陈怀满. 环境土壤学. 第2版[M]. 北京: 科学出版社, 2010.
    [9] Bolan N S, Adriano D C, Duraisamy P, et al. Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition[J]. Plant and Soil, 2003, 250(1): 83 − 94. doi: 10.1023/A:1022826014841
    [10] Erdem M, Zverdi A. Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification[J]. Hydrometallurgy, 2011, 105(3-4): 270 − 276. doi: 10.1016/j.hydromet.2010.10.014
    [11] 雷 鸣, 曾 敏, 胡立琼, 等. 不同含磷物质对重金属污染土壤-水稻系统中重金属迁移的影响[J]. 环境科学学报, 2014, 34(6): 1527 − 1533.
    [12] 钟倩云, 曾 敏, 廖柏寒, 等. 碳酸钙对水稻吸收重金属(Pb、Cd、Zn)和As的影响[J]. 生态学报, 2015, 35(4): 1242 − 1248.
    [13] 周嗣江. 含铁材料钝化稻田土壤镉和砷的效果研究[ D]. 华中农业大学, 2020.
    [14] 陈绍荣, 余根德, 白云飞, 等. 土壤酸化及酸性土壤调理剂应用概述[J]. 化肥工业, 2013, 40(2): 66 − 68. doi: 10.3969/j.issn.1006-7779.2013.02.022
    [15] 肖利萍, 李嘉欣, 王 涛, 等. 硼泥对含铜酸性废水的吸附性能[J]. 环境科学与技术, 2020, 43(7): 94 − 100.
    [16] 于嘉琪. 营养型钝化剂对猪粪厌氧发酵重金属铬/镉的钝化影响[D]. 沈阳农业大学, 2019.
    [17] 徐伯钧. 农田重金属污染土壤修复技术研究进展[J]. 农村经济与科技, 2018, 29(7): 8 − 10. doi: 10.3969/j.issn.1007-7103.2018.07.005
    [18] 程 运, 王昕晔, 吕文婷, 等. 高岭土高温吸附重金属和碱金属的研究进展[J]. 化工进展, 2019, 38(8): 3852 − 3865.
    [19] Mouni L, Belkhiri L, Bollinger J, et al. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies[J]. Applied Clay Science, 2018, 153: 38 − 45. doi: 10.1016/j.clay.2017.11.034
    [20] Wu J, Li Z, Huang D, et al. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils[J]. Journal of Hazardous Materials, 2020, 387: 122010. doi: 10.1016/j.jhazmat.2019.122010
    [21] 杨 兰, 李 冰, 王昌全, 等. 改性生物炭材料对稻田原状和外源镉污染土钝化效应[J]. 环境科学, 2016, 37(9): 3562 − 3574.
    [22] 王科积, 韩 熙, 张锡洲, 等. 钝化材料复配对镉污染土壤中镉的固定效果[J]. 核农学报, 2020, 34(2): 433 − 441. doi: 10.11869/j.issn.100-8551.2020.02.0433
    [23] Wang Y M, Zhang S W, Wang C Q, et al. Simultaneous immobilization of soil Cd(II) and As(V) by Fe-modified biochar[J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 827 − 838. doi: 10.3390/ijerph17030827
    [24] 李月芬, 王冬艳, 汤 洁, 等. 吉林西部土壤砷的形态分布及其与土壤性质的关系研究[J]. 农业环境科学学报, 2012, 31(3): 516 − 522.
    [25] 熊 静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(08): 1909 − 1918.
    [26] Tabak H H, Lens P, Hullebusch E, et al. Developments in bioremediation of soils and sediments polluted with metals and radionuclides – 1. microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport[J]. Reviews in Environmental Science & Bio/technology, 2005, 4(3): 115 − 156.
    [27] Lv P, Liu C, Rao Z. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications[J]. Renewable & Sustainable Energy Reviews, 2017, 68: 707 − 726.
    [28] 刘娟娟. 铜、铬单一及复合体系在两种黏土矿物中吸附的差异及其机理研究[ D]. 西北农林科技大学, 2014.
    [29] 王亚男. 外源砷在土壤中的老化及其对土壤微生物影响的机理研究[ D]. 中国农业大学, 2016.
    [30] 李 轶, 宫兴隆, 于嘉琪, 等. 硼泥对猪粪厌氧发酵重金属铬及其光谱特性的影响[J]. 农业工程学报, 2019, 35(24): 255 − 261. doi: 10.11975/j.issn.1002-6819.2019.24.030
    [31] 罗玉虎, 孙婴婴, 王 楠. 生物炭修复土壤重金属污染的研究进展[J]. 西部大开发, 2019, 4(1): 28 − 35.
    [32] 梁 艳, 卢燕南, 唐艳葵, 等. 多组分重金属复合体系在高岭土中的吸附差异[J]. 广西大学学报, 2021, 46(1): 173 − 181.
    [33] Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochart[J]. Environmental Pollution, 2011, 159(2): 474 − 480. doi: 10.1016/j.envpol.2010.10.016
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  20
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 录用日期:  2022-04-07
  • 修回日期:  2022-01-24
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回