Determination for the Uniformity of Parent Material of Basalt-developed Soil in the Xinsheng Basin
-
摘要: 成土母质的均一性判定是土壤发生研究的必要起点,也是构建土壤时间序列和评价土壤质量变化的先决条件。选取浙江省新嵊盆地典型玄武岩发育土壤剖面为研究对象,采用土壤地理学和元素地球化学方法,通过对土壤剖面的形态特征、颗粒组成、母质不连续性系数、稳定元素Ti与Zr比值以及稀土元素分布模式等指标的分析,进行不同土壤剖面母质均一性的判定。研究结果表明,土壤颜色、结构、根系等土壤剖面形态自下而上呈现均一、渐变特性特征,且所有剖面没有发现异源堆积特征,可以初步直观判定研究剖面的母质均一性;土壤颗粒组成及扣除黏粒后的粗粉粒/中粉粒含量等指标都比较均一,并沿剖面垂直方向呈现较好的渐变趋势;Ti/Zr比值和稀土元素配分模式在不同层次间的分布也没有明显的差异;母质均一性系数均介于−0.6 ~ 0.6之间。因此,研究剖面内与剖面间母质来源相同。Abstract: The homogeneity of parent material during soil formation process is a necessary starting point for the study of soil occurrence, and is also a prerequisite for constructing soil time series and evaluating soil quality change. The morphological characteristics, particle size composition, uniformity of parent material, distribution of rare earth element Ti and Zr and their ratio within typical basalt soil profiles in the Xinsheng Basin, Zhejiang Province were investigated by using the methods of soil geography and element geochemistry, and the uniformity of parent material in different soil profiles were determined. The results showed that the morphological characteristics of soil profile, such as the soil color, structure, root system, showed uniform and gradual characteristics from bottom to top, and no heterogenous accumulation characteristics were found in all profiles, which could preliminarily and intuitively determine the parent material homogeneity of the study profiles; soil grain size composition and coarse/medium silt content after deducting clay particles were relatively uniform, and showed relatively higher vertical direction along the profile. There was no obvious difference between the Ti/Zr ratio and the distribution of rare earth elements at different soil layers. The uniformity coefficient of parent material was between −0.6 and 0.6. Therefore, the source of parent material in the study section is the same as that in the cross section.
-
Key words:
- The Xinsheng basin /
- Homogeneity of parent material /
- Soil genesis /
- Rare earth element
-
表 1 新嵊盆地土壤剖面形态特征描述
Table 1. Description of soil profile morphology in the Xinsheng Basin
剖面编号
Profile深度(cm)
Depth发生层
Horizon颜色
Color新生体
New formation结构
Structure根系
Root systemAJX 0 ~ 15 A 7.5YR3/4 少量铁锰结核 团粒状 大量根系 15 ~ 25 B 7.5YR2/4 大量铁锰结核 弱块状 中量根系 25 ~ 50 BC 7.5YR4/3 少量铁锰结核 弱块状 少量根系 50 ~ 100 C 7.5YR5/2 少量铁锰结核 块状 无 SCN 0 ~ 10 A 7.5YR3/4 少量铁锰结核 团粒状 大量根系 10 ~ 19 B 7.5YR4/4 大量铁锰结核 块状 中量根系 19 ~ 39 BC 7.5YR5/6 少量铁锰结核 块状 少量根系 39 ~ 50 C 7.5YR4/6 少量铁锰结核 块状 无 表 2 研究剖面土壤的颗粒组成
Table 2. Composition of particle sizes in soil profiles
剖面
Profile深度(cm)
Depth砂粒(%)
Sand粉粒(%)
Silt粉粒组成(%)
Silt composition黏粒(%)
Clay粗粉粒(50 ~ 20 μm)
Coarse silt中粉粒(20 ~ 10 μm)
Medium silt细粉粒(10 ~ 2 μm)
Fine siltAJX 0 ~ 1 11.06 74.41 15.72 18.73 39.96 14.52 1 ~ 4 10.54 75.96 15.24 18.97 41.75 13.50 4 ~ 7 9.13 77.30 14.85 20.81 41.65 13.57 7 ~ 10 9.30 76.30 18.21 21.78 36.31 14.41 10 ~ 15 7.65 74.09 18.01 20.38 35.70 18.26 15 ~ 20 13.98 70.60 20.62 23.44 26.54 15.42 20 ~ 30 6.23 87.74 23.66 26.85 37.23 6.03 30 ~ 40 9.97 83.50 21.70 26.41 35.39 6.53 40 ~ 60 12.57 80.66 19.95 23.30 37.40 6.78 60 ~ 80 38.55 58.68 24.97 22.67 11.05 2.77 80 ~ 100 39.81 57.56 25.12 21.61 10.83 2.63 SCN 0 ~ 1 6.89 78.48 12.92 16.78 48.78 14.63 1 ~ 4 4.52 81.18 13.94 17.65 49.59 14.30 4 ~ 7 7.67 76.56 13.14 17.14 46.28 15.77 7 ~ 10 10.22 69.70 16.87 15.55 37.29 20.07 10 ~ 15 11.83 66.35 17.50 17.54 31.31 21.82 15 ~ 20 15.32 68.69 17.61 18.38 32.70 15.98 20 ~ 30 31.81 59.46 20.20 18.84 20.42 8.74 30 ~ 40 36.80 59.37 20.36 16.99 22.02 3.84 40 ~ 50 41.49 53.51 20.64 16.70 16.17 4.99 表 3 扣除黏粒的粉粒、粗粉粒、中粉粒以及粗粉粒/中粉粒与钛/锆在剖面中的变异系数
Table 3. Variation coefficients of clay-free silt,coarse silt (CS),medium silt (MS),ratio of CS to MS (CS/RS),and ratio of Ti to Zr (Ti/Zr) in soil profiles
剖面
Profile扣除黏粒的粉粒(%)
Clay-free silt扣除黏粒的粗粉粒(%)
Clay-free CS扣除黏粒的中粉粒(%)
Clay-free MS扣除黏粒的粗粉粒/中粉粒
CS/MS钛/锆
Ti/Zr平均值
M标准差
SD变异系数
CV平均值
M标准差
SD变异系数
CV平均值
M标准差
SD变异系数
CV平均值
M标准差
SD变异系数
CV平均值
M标准差
SD变异系数
CVAJX 83.3 11.92 14.31 22.01 3.19 14.47 24.85 2.47 9.95 0.89 0.13 14.63 83.41 4.19 5.02 SCN 79.4 14.44 18.19 19.61 3.01 15.33 20.03 1.66 8.29 0.99 0.18 18.24 69.80 4.64 6.65 注:M—Mean value;SD—Standard deviation;CV—Coefficient of variation. 表 4 土壤剖面中钛和锆元素的分布及其比值
Table 4. Distribution of Ti and Zr and their ratio (Ti/Zr) in the soil profile
剖面号
Profile深度(cm)
Depth锆(g kg−1)
Zr钛(g kg−1)
Ti钛/锆
Ti/ZrAJX 0 ~ 5 0.201 17.733 88.09 5 ~ 15 0.198 17.309 87.42 15 ~ 25 0.157 13.082 83.22 25 ~ 50 0.148 12.556 84.64 50 ~ 80 0.132 10.274 77.95 80 ~ 100 0.138 10.952 79.11 SCN 0 ~ 5 0.220 14.442 65.73 5 ~ 10 0.215 14.378 66.74 10 ~ 19 0.185 12.374 66.81 19 ~ 39 0.160 11.942 74.67 39 ~ 50 0.161 12.077 75.05 -
[1] Wrb I W G. World Reference Base for Soil Resources 2014: international soil classification system for naming soils and creating legends for soil maps[M]. Rome: Food and Agriculture Organization of the United Nations, 2014. [2] Schaetzl R J. Lithologic discontinuities in some soils on drumlins: Theory, detection, and application[J]. Soil Science, 1998, 163(7): 570 − 590. doi: 10.1097/00010694-199807000-00006 [3] Buggle B R, Glaser B, Hambach U, et al. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine)[J]. Quaternary Science Reviews, 2008, 27(9): 1058 − 1075. [4] Schaetzl R J. Spodosol- Alfisol intergrades: Bisequal soils in NE Michigan, USA[J]. Geoderma, 1996, 74: 23 − 47. doi: 10.1016/S0016-7061(96)00060-2 [5] Liebens J, Schaetzl R J. Relative-age relationships of debris flow deposits in the Southern Blue Ridge, North Carolina[J]. Geomorphology, 1997, 21(1): 53 − 67. doi: 10.1016/S0169-555X(97)00036-6 [6] Tsai C C, Chen Z S. Lithologic Discontinuities in Ultisols Along a Toposequence In Taiwan[J]. Soil Science, 2000, 165(7): 587 − 596. doi: 10.1097/00010694-200007000-00007 [7] Lorz C, Phillips J. Pedo-ecological consequences of lithological discontinuities in soils-Examples from Central Europe[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4): 573 − 581. doi: 10.1002/jpln.200521872 [8] Presley D, Hartley P E, Ransom M D, et al. Mineralogy and morphological properties of buried polygenetic paleosols formed in late quaternary sediments on upland landscapes of the central plains, USA[J]. Geoderma, 2010, 154(3): 508 − 517. [9] 唐小明, 游省易, 尚岳全. 浙江省玄武岩台地地貌及地质灾害[J]. 浙江大学学报(理学版), 2009, 36(2): 231 − 236. [10] 胡仲承, 周金洁, 陈吴文涛, 等. 浙江东部玄武岩发育土壤剖面风化特征[J]. 浙江农林大学学报, 2020, 37(2): 259 − 265. doi: 10.11833/j.issn.2095-0756.2020.02.009 [11] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. [12] 中国科学院南京土壤研究所土壤系统分类课题组. 土壤野外描述, 水热动态观测方法及土壤信息系统(中国土壤系统分类用)[M]. 北京: 科学出版社, 1991. [13] 王兆夺. 黄河中-淮河上流全新世黄土土壤粒度与物源关系研究[D]. 西安: 陜西师范大学, 2018. [14] Jahn R, Blume H P, Asio V, et al. Guidelines for soil description, 4th edition[M]. Rome: Food and Agriculture Organization of the United Nations, 2006. [15] 中国科学院南京土壤研究所, 中国科学院西安光学精密机械研究所. 中国标准土壤色卡[M]. 南京: 南京出版社, 1989. [16] 章明奎. 浙江红壤中结核的矿物学研究[J]. 浙江农业学报, 2000, 12(3): 129 − 131. doi: 10.3969/j.issn.1004-1524.2000.03.004 [17] 李永华, 王五一, 谭文峰, 等. 土壤铁锰结核中生命有关元素的化学地理特征[J]. 地理研究, 2001, 20(5): 609 − 615. doi: 10.3321/j.issn:1000-0585.2001.05.011 [18] 张孝中. 黄土高原土壤颗粒组成及质地分区研究[J]. 中国水土保持, 2002, 3: 11 − 13. doi: 10.3969/j.issn.1000-0941.2002.05.005 [19] 李学斌, 张义凡, 陈 林, 等. 荒漠草原典型群落土壤粒径和养分的分布特征及其关系研究[J]. 西北植物学报, 2017, 37(8): 1635 − 1644. doi: 10.7606/j.issn.1000-4025.2017.08.1635 [20] Hall K, Thorn C, Sumner P. On the persistence of 'weathering'[J]. Geomorphology, 2012, 150(1): 1 − 10. [21] 章明奎, 姚玉才, 邱志腾, 等. 贵州省第四纪红黏土发育土壤的性状及其系统分类研究[J]. 江西农业学报, 2018, 30(8): 42 − 48. [22] Pal D K, Wani S P, Sahrawat K L. Vertisols of tropical Indian environments: Pedology and edaphology[J]. Geoderma, 2012, 189: 28 − 49. [23] Dekker L W, Ritsema C J. Uneven moisture patterns in water repellent soils[J]. Geoderma, 1996, 70(2 - 4): 87 − 99. [24] Liebens J. Characteristics of soils on debris aprons in the southern blue ridge, North Carolina[J]. Physical Geography, 1999, 20(1): 27 − 52. doi: 10.1080/02723646.1999.10642667 [25] Ahr S W, Nordt L C, Forman S L. Soil genesis, optical dating, and geoarchaeological evaluation of two upland Alfisol pedons within the Tertiary Gulf Coastal Plain[J]. Geoderma, 2013, 192(1): 211 − 226. [26] 陈留美, 张甘霖. 滨海沉积物发育的水稻土时间序列母质均一性判定与特性演变[J]. 土壤学报, 2009, 46(5): 753 − 763. doi: 10.3321/j.issn:0564-3929.2009.05.001 [27] Steinnes E, Lierhagen S. Geographical distribution of trace elements in natural surface soils: Atmospheric influence from natural and anthropogenic sources[J]. Applied Geochemistry, 2018, 88: 2 − 9. doi: 10.1016/j.apgeochem.2017.03.013 [28] Ogg C M, Edmonds W J, Baker J C, et al. Statistical Verification of Soil Discontinuities in Virginia[J]. Soil Science, 2000, 165(2): 170 − 183. doi: 10.1097/00010694-200002000-00008 [29] 周如玉, 文星跃, 李卫朋, 等. 发育于晚更新世成都“褐色黏土”的土壤发生学特征及其环境响应[J]. 土壤通报, 2019, 50(5): 1016 − 1025. [30] 杨守业, 李从先. 黄海周边河流的稀土元素地球化学及沉积物物源示踪[J]. 科学通报, 2003, 48(11): 1233 − 1236. doi: 10.3321/j.issn:0023-074X.2003.11.024 [31] 朱丽东, 周尚哲, 叶 玮, 等. 网纹红土稀土元素地球化学特征的初步研究[J]. 中国沙漠, 2007, 27(2): 194 − 200. doi: 10.3321/j.issn:1000-694X.2007.02.005 [32] 樊连杰, 裴建国, 赵良杰, 等. 岩溶地下河系统中表层土壤稀土元素含量及分布特征[J]. 中国稀土学报, 2016, 34(4): 504 − 512. [33] 蓝先洪, 申顺喜. 南黄海中部沉积岩心的稀土元素地球化学特征[J]. 海洋通报, 2002, 21(5): 46 − 53. doi: 10.3969/j.issn.1001-6392.2002.05.007 [34] 陈立业, 张 珂, 傅建利, 等. 邙山黄土古土壤S2沉积以来的微量和稀土元素地球化学特征及其物源指示意义[J]. 中山大学学报(自然科学版), 2018, 57(3): 14 − 23. [35] 韩卓汝. 海南岛北部潮间带沉积物稀土元素富集规律及其生态效应研究[D]. 海南: 海南师范大学, 2013. -