Bibliometric Analysis for Factors of Influencing Agricultural Soil N2O Emission Based on Web of Science
-
摘要: 为客观全面地分析农业土壤N2O排放影响因素领域的研究动态、热点及发展脉络,利用Web of Science数据库中1978~2018年的文献信息,结合R语言文献计量分析方法,从高被引论文、关键词及历史直接引文三个方面对农业土壤N2O排放影响因素研究情况进行了系统的文献计量分析。结果表明:(1)农业土壤N2O排放的影响因素主要有四大类:土壤性质包括土壤类型、质地、pH、温度、水分、容重、氧化还原电位、O2、矿质氮(硝态氮 + 铵态氮)、有机碳、酶活性(主要是硝酸还原酶和亚硝酸还原酶等)和微生物多样性等;农艺管理措施包括施肥管理(肥料类型、施肥量、施肥时间、施肥方式、肥料形态等)、种植作物类型、播种时间、耕作制度、灌溉制度、秸秆还田、生物炭和硝化抑制剂使用、土地利用方式及变化等;气候条件(雪、霜、降水、气温和太阳有效辐射等);地下水位和生态系统氮饱和度等。(2)该领域的研究热点在宏观层面上包括利用模型估算全球、国家、区域尺度上的N2O排放清单,评价切实有效的农业N2O减排措施效果;在中、微观尺度上,主要通过田间或室内培养试验用土壤理化性质及微生物指标反映、研究各影响因素变化(主要为单一因素研究)对N2O排放的效应。(3)该领域研究经历了影响因素从土壤性质再到人为活动的过程,研究内容包括使用模型研究农业土壤N2O排放过程、机制,估算大尺度多因素条件下的农业土壤N2O排放清单及减排措施效果。(4)农艺管理措施包括施用硝化抑制剂、包膜肥料、生物炭和秸秆还田,这些措施均可有效地减少农业土壤N2O排放,但每一措施的效果因具体条件而不同。(5)未来农业土壤N2O排放研究将向整合多因素、多尺度、多层次方向发展,其重点仍为明确农业土壤N2O排放机制、影响因素的相对重要性以及不同减排措施的效应,进而为因地制宜地制定科学有效的农业土壤N2O减排措施提供支持。Abstract: In order to analyze the research dynamics, hotspots and trends of factors of influencing agricultural soil N2O emissions systematically and comprehensively, R-bibliometrix tool was used to analyze the literature related to the topic from three aspects of highly cited papers, keywords and historical direct citations based on Web of Science Core Collection Database. The results showed that the factors influencing agricultural soil N2O emissions were soil properties (soil type; texture; pH; temperature; moisture; bulk density; redox potential; oxygen; mineral nitrogen including nitrate and ammonium; organic carbon; enzymatic activities mainly including nitrate reductase and nitrite reductase, and soil microbial diversity), management practices (nutrient management including nitrogen fertilizer type; nitrogen fertilizer application rate; fertilization time and pattern; crop type; sowing time; tillage; irrigation; straw return or crop residue addition; biochar; nitrification inhibitor; land use change and so on), climatic conditions (snow; frost; precipitation; temperature; photosynthetically active radiation and so on), underground water level and ecosystem nitrogen saturation. On the macro scale, research hotspots mainly focused on the estimation of agricultural soil N2O emissions inventory by using models from the global, national and regional scales, and the effective measures of mitigating agricultural soil N2O emission based on the influence factors of agricultural soil N2O emissions. On the medium and micro scales, research hotspots mainly focused on the response of agricultural soil N2O emissions to influence factors (mainly single factor) in field or indoor experiments based on the analysis of soil physicochemical and microbial indicators. The historical trends in the research field of influence factors of agricultural soil N2O emission were from soil properties to anthropogenic management. In this process, models were used to investigate the emission process, mechanisms and mitigation measures from the perspective of multi-factor and large-scale. Generally, nitrogen fertilizer managements including the application of nitrification inhibitors, coated fertilizers, biochar and straw were used as effective measures for mitigating agricultural soil N2O emission according to the specific conditions. Our findings suggest that the further studies about agricultural soil N2O emission should take multi-factors and multi-scales into account, in order to clarify the relative importance of the influencing factors and mechanisms, and should establish scientific and effective measures for mitigating agricultural soil N2O emissions.
-
Key words:
- Soil N2O emission /
- Bibliometric analysis /
- Influence factor /
- Research hotspot /
- Historical trend /
- Mitigation measure /
- R language
-
表 1 1978 ~ 2018年农业土壤N2O排放影响因素研究领域Top 10高被引论文
Table 1. Top 10 highly cited papers about the influence factors of agricultural soil N2O emission from 1978 to 2018
排名
Rank第一作者
First author年份
Year农业土壤N2O排放影响因素
Influence factor of agricultural soil N2O emission本地被引频次
Local citation counts年均被引频次
Citation counts per year1 Bouwman A F 1996[35] 施肥 136 5.9 2 Bouwman A F 2002[36] 土壤质地、有机碳、排水条件、弱酸性条件(pH);施氮量、肥料类型;作物类型 101 5.9 3 Stehfest E 2006[37] 土壤有机碳、pH、质地;施氮量、
肥料类型;作物类型93 7.2 4 Ravishankara A R 2009[1] 施肥、化石燃料燃烧、工业化、
生物质和生物燃料燃烧88 8.8 5 Dobbie K E 1999[38] 土壤充水孔隙度、温度、矿质氮;
施肥;降雨;作物类型86 4.3 6 Linn D M 1984[39] 土壤充水孔隙度、水溶性碳和硝态氮含量;免耕 86 2.5 7 Dobbie K E 2003[40] 土壤充水孔隙度、温度和硝态氮含量 83 5.2 8 Rogers J E 1991[34] 土壤微生物有关的环境因子如NH4+、O2等 82 2.9 9 Butterbach-Bahl K 2013[32] 土壤水分和温度;微生物多样性;
生态系统的氮饱和度67 11.2 10 Firestone M K 1989[33] 土壤硝态氮、有机碳、铵态氮、O2的有效性 66 2.2 表 2 1978 ~ 2018年农业土壤N2O排放影响因素研究的历史直接引文
Table 2. Historical direct citations about influence factors of agricultural soil N2O emission from 1978 to 2018
年份
Year第一作者
First author农业土壤N2O排放影响因素
Influence factor of agricultural soil N2O emission总被引频次
Total citation counts年均被引频次
Citation counts per year1997[86] Beauchamp E G 土壤O2浓度、水分、矿质氮、pH、温度、碳含量、酶活性 115 5.2 1998[87] Flessa H 土壤类型、pH、硝态氮;施肥;地下水位、霜 115 5.5 2001[42] Wrage N 土壤pH、O2浓度、碳含量 986 54.8 2002[50] Brown L 土壤温度、水分、碳、质地、容重、pH、氧化还原电位;气候;作物 129 7.6 2002[88] Skiba U 耕作方式(深耕、浅耕)、播种时间(春季和冬季)、施氮量 29 1.7 2003[89] de Klein C A M 土壤质地、排水能力;降雨 155 9.7 2004[83] Rochette P 土壤O2浓度;肥料类型;季节(春、秋);天气条件(温度和降雨) 82 5.5 2005[60] Kesik M 土壤有机碳、质地、pH、矿质氮;气温、降水、光合有效辐射;氮沉降 129 9.2 2006[73] Del Grosso S J 土壤含水量、温度、质地、有机质、铵态氮、硝态氮;植物、凋落物;气温、降水;土地利用 136 10.5 2007[66] Beheydt D 土壤质地、有机碳、容重、pH;有机无机肥施氮量;作物类型、培养时间、实验地点 84 7.0 2008[79] Rochette P 土壤质地;季节(有无雪、解冻);耕作(免耕与传统耕作) 166 15.1 2008[80] Rochette P 化肥施用、作物残茬、放牧动物、施用有机肥 137 12.5 2008[81] Rochette P 测定N2O排放通量的密闭静态箱标准方法 72 6.5 2008[82] Rochette P 土壤质地、矿质氮、充水孔隙度;肥料形态(固态和液态) 29 2.6 2011[52] Lesschen J P 氮投入类型、土壤类型、土地利用方式和年降水量 85 10.6 2012[84] Pelster D E 土壤质地、碳含量;肥料类型(无机肥与有机肥) 61 8.7 2013[85] Rees R M 实验地点;施氮量及肥料类型、耕作、农业系统管理、排水;土地利用 63 10.5 -
[1] Ravishankara A R, Daniel J S, Portmann R W. Nitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123 − 125. doi: 10.1126/science.1176985 [2] Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199 − 9204. doi: 10.1073/pnas.1322434111 [3] Thomson A J, Giannopoulos G, Pretty J, et al. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions[J]. Philosophical Transactions of the Royal Society B – Biological Sciences, 2012, 367(1593): 1157 − 1168. doi: 10.1098/rstb.2011.0415 [4] Zhou M, Zhu B, Wang S, et al. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis[J]. Global Change Biology, 2017, 23(10): 4068 − 4083. doi: 10.1111/gcb.13648 [5] Akiyama H, Yan X, Yagi K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis[J]. Global Change Biology, 2010, 16(6): 1837 − 1846. [6] 唐艺玲, 王建武, 杨文亭. 间作对旱地CO2和N2O排放影响的研究进展[J]. 应用生态学报, 2016, 27(4): 1323 − 1330. [7] 蔡延江, 丁维新, 项 剑. 免耕对农田土壤N2O排放影响及作用机制研究进展[J]. 土壤通报, 2012, 43(4): 1013 − 1018. [8] 张军科, 郝庆菊, 江长胜. 免耕方式下土壤温室气体排放及影响因素的研究进展[J]. 土壤通报, 2011, 42(1): 236 − 242. [9] 郭树芳, 齐玉春, 董云社. 滴灌对农田土壤CO2和N2O产生与排放的影响研究进展[J]. 中国环境科学, 2014, 34(11): 2757 − 2763. [10] 张 冉, 赵 鑫, 濮 超. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析[J]. 农业工程学报, 2015, 31(22): 1 − 6. doi: 10.11975/j.issn.1002-6819.2015.22.001 [11] Chen H, Li X, Hu F, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis[J]. Global Change Biology, 2013, 19(10): 2956 − 2964. doi: 10.1111/gcb.12274 [12] 蔡延江, 王小丹, 丁维新. 冻融对土壤氮素转化和N2O排放的影响研究进展[J]. 土壤学报, 2013, 50(5): 1032 − 1042. [13] Matzner E, Borken W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review[J]. European Journal of Soil Science, 2008, 59(2): 274 − 284. doi: 10.1111/j.1365-2389.2007.00992.x [14] Kool D M, Wrage N, Oenema O, et al. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO and N2O: a review[J]. Rapid Communications in Mass Spectrometry, 2007, 21(22): 3569 − 3578. doi: 10.1002/rcm.3249 [15] 罗晓琦, 冯 浩, 刘晶晶. 生物炭施用下中国农田土壤N2O排放的Meta分析[J]. 中国生态农业学报, 2017, 25(9): 1254 − 1265. [16] Liu X, Mao P, Li L, et al. Impact of biochar application on yield-scaled greenhouse gas intensity: A meta-analysis[J]. Science of the Total Environment, 2019, 656: 969 − 976. doi: 10.1016/j.scitotenv.2018.11.396 [17] 李香兰, 徐 华, 蔡祖聪. 氢醌、双氰胺组合影响稻田甲烷和氧化亚氮排放研究进展[J]. 土壤学报, 2009, 46(5): 917 − 924. doi: 10.3321/j.issn:0564-3929.2009.05.021 [18] Ruser R, Schulz R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(2): 171 − 188. doi: 10.1002/jpln.201400251 [19] Massimo A, Corrado C. bibliometrix: An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics, 2017, 11(4): 959 − 975. doi: 10.1016/j.joi.2017.08.007 [20] Liu, Y, Wu, K, Zhao, R. Bibliometric analysis of research on soil health from 1999 to 2018[J]. Journal of Soils and Sediments, 2020, 20(3): 1513 − 1525. doi: 10.1007/s11368-019-02519-9 [21] Padilla F M, Gallardo M, Manzano-agugliaro F. Global trends in nitrate leaching research in the 1960-2017 period[J]. Science of the Total Environment, 2018, 643: 400 − 413. doi: 10.1016/j.scitotenv.2018.06.215 [22] 李 雅, 刘 梅, 曾全超. 基于文献计量的土壤有机碳与土壤微生物多样性研究前沿态势分析[J]. 土壤通报, 2017, 48(3): 745 − 756. [23] 李志琳, 解宇峰, 蒋静艳. 基于Web of Science数据库近30年土壤石油污染研究的文献计量分析[J]. 土壤通报, 2018, 49(4): 1001 − 1008. [24] 陈奕云, 唐名阳, 王淑桃. 基于文献计量的中国农田土壤重金属污染评价[J]. 土壤通报, 2016, 47(1): 219 − 225. [25] Van Eck N J, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523 − 538. doi: 10.1007/s11192-009-0146-3 [26] Cuccurullo C, Aria M, Sarto F. Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains[J]. Scientometrics, 2016, 108(2): 595 − 611. doi: 10.1007/s11192-016-1948-8 [27] Garfield E. Historiographic mapping of knowledge domains literature[J]. Journal of Information Science, 2004, 30(2): 119 − 145. doi: 10.1177/0165551504042802 [28] 杜志鹏, 苏德纯. 稻田重金属污染修复治理技术及效果文献计量分析[J]. 农业环境科学学报, 2018, 37(11): 2409 − 2417. doi: 10.11654/jaes.2018-1128 [29] Sugden A M. Many factors influence global change[J]. Science, 2019, 366(6467): 833 − 835. [30] Rillig M C, Ryo M, Lehmann A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366(6467): 886 − 890. doi: 10.1126/science.aay2832 [31] Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263 − 276. doi: 10.1038/nrmicro.2018.9 [32] Butterbach-bahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621): 20130122. doi: 10.1098/rstb.2013.0122 [33] Firestone M K, Davidson E A. Microbiological basis of NO and N2O production and consumption in soil[M], in: Andrcac M O and Schimcl D. S. (Eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere: report of the Dahlem workshop on exchange of trace gases between terrestrial ecosystems and the atmosphere, New York: Wiley, 1989, 47: 7–21. [34] Rogers J E, Whitman W B, Abad C R. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes [M]. Washington, D.C.: American Society for Microbiology, 1991. [35] Bouwman A F. Direct emission of nitrous oxide from agricultural soils[J]. Nutrient Cycling in Agroecosystems, 1996, 46(1): 53 − 70. doi: 10.1007/BF00210224 [36] Bouwman A F, Boumans L J M, Batjes N H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data[J]. Global Biogeochemical Cycles, 2002, 16(4): 6-1 − 6-13. [37] Stehfest E, Bouwman L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207 − 228. doi: 10.1007/s10705-006-9000-7 [38] Dobbie K E, Mctaggart I P, Smith K A. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D21): 26891 − 26899. doi: 10.1029/1999JD900378 [39] Linn D M, Doran J W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils[J]. Soil Science Society of America Journal, 1984, 48(6): 1267 − 1272. doi: 10.2136/sssaj1984.03615995004800060013x [40] Dobbie K E, Smith K A. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables[J]. Global Change Biology, 2003, 9(2): 204 − 218. doi: 10.1046/j.1365-2486.2003.00563.x [41] Opsahl T, Agneessens F, Skvoretz J. Node centrality in weighted networks: Generalizing degree and shortest paths[J]. Social Networks, 2010, 32(3): 245 − 251. doi: 10.1016/j.socnet.2010.03.006 [42] Wrage N, Velthof G L, Van Beusichem M L, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology and Biochemistry, 2001, 33(12-13): 1723 − 1732. doi: 10.1016/S0038-0717(01)00096-7 [43] Wrage-mönnig N, Horn M A, Well R, et al. The role of nitrifier denitrification in the production of nitrous oxide revisited[J]. Soil Biology and Biochemistry, 2018, 123: A3 − A16. doi: 10.1016/j.soilbio.2018.03.020 [44] Hanson G C, Groffman P M, Gold A J. Denitrification in riparian wetlands receiving high and low groundwater nitrate inputs[J]. Journal of Environmental Quality, 1994, 23(5): 917 − 922. [45] Hefting M M, Bobbink R, De Caluwe H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones[J]. Journal of Environmental Quality, 2003, 32(4): 1194 − 1203. doi: 10.2134/jeq2003.1194 [46] Di H J, Cameron K C. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland[J]. Soil Use and Management, 2002, 18(4): 395 − 403. doi: 10.1079/SUM2002151 [47] Xia L L, Lam S K, Chen D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917 − 1925. doi: 10.1111/gcb.13455 [48] 曹文超, 宋 贺, 王娅静. 农田土壤N2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019, 25(10): 1781 − 1798. doi: 10.11674/zwyf.18441 [49] Clough T J, Di H J, Cameron K C, et al. Accounting for the utilization of a N2O mitigation tool in the IPCC inventory methodology for agricultural soils[J]. Nutrient Cycling in Agroecosystems, 2007, 78(1): 1 − 14. doi: 10.1007/s10705-006-9069-z [50] Brown L, Syed B, Jarvis S C, et al. Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture[J]. Atmospheric Environment, 2002, 36(6): 917 − 928. doi: 10.1016/S1352-2310(01)00512-X [51] Mosier A, Kroeze C, Nevison C, et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle - OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology[J]. Nutrient Cycling in Agroecosystems, 1998, 52(2-3): 225 − 248. [52] Lesschen J P, Velthof G L, De Vries W, et al. Differentiation of nitrous oxide emission factors for agricultural soils[J]. Environmental Pollution, 2011, 159(11): 3215 − 3222. doi: 10.1016/j.envpol.2011.04.001 [53] Gu J X, Nicoullaud B, Rochette P, et al. A regional experiment suggest that soil texture is a major control of N2O emissions from tile drained winter wheat fields during the fertilization period[J]. Soil Biology and Biochemistry, 2013, 60: 134 − 141. doi: 10.1016/j.soilbio.2013.01.029 [54] Wang X, Ye C, Zhang Z, et al. Effects of temperature shock on N2O emissions from denitrifying activated sludge and associated active bacteria[J]. Bioresource Technology, 2018, 249: 605 − 611. doi: 10.1016/j.biortech.2017.10.070 [55] Smith K A, Thomson P E, Clayton H, et al. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils[J]. Atmospheric Environment, 1998, 32(19): 3301 − 3309. doi: 10.1016/S1352-2310(97)00492-5 [56] Dobbie K E, Smith K A. The effects of temperature, water‐filled pore space and land use on N2O emissions from an imperfectly drained gleysol[J]. European Journal of Soil Science, 2001, 52(4): 667 − 673. doi: 10.1046/j.1365-2389.2001.00395.x [57] Zhu X, Burger M, Doane T A, et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6328 − 6333. doi: 10.1073/pnas.1219993110 [58] Stange C F, Spott O, Müller C. An inverse abundance approach to separate soil nitrogen pools and gaseous nitrogen fluxes into fractions related to ammonium, nitrate and soil organic nitrogen[J]. European Journal of Soil Science, 2009, 60(6): 907 − 915. doi: 10.1111/j.1365-2389.2009.01188.x [59] Senbayram M, Chen R, Budai A, et al. N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations[J]. Agriculture, Ecosystems and Environment, 2012, 147: 4 − 12. doi: 10.1016/j.agee.2011.06.022 [60] Kesik M, Ambus P, Baritz R, et al. Inventories of N2O and NO emissions from European forest soils[J]. Biogeosciences, 2005, 2(4): 353 − 375. doi: 10.5194/bg-2-353-2005 [61] Pu Y, Zhu B, Dong Z, et al. Soil N2O and NOx emissions are directly linked with N-cycling enzymatic activities[J]. Applied Soil Ecology, 2019, 139: 15 − 24. doi: 10.1016/j.apsoil.2019.03.007 [62] Afreh D, Zhang J, Guan D, et al. Long-term fertilization on nitrogen use efficiency and greenhouse gas emissions in a double maize cropping system in subtropical China[J]. Soil & Tillage Research, 2018, 180: 259 − 267. [63] Yao Z, Zheng X, Wang R, et al. Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management[J]. Journal of Geophysical Research – Biogeosciences, 2013, 118(2): 623 − 638. doi: 10.1002/jgrg.20061 [64] Grave R A, Nicoloso R D S, Cassol P C, et al. Determining the effects of tillage and nitrogen sources on soil N2O emission[J]. Soil & Tillage Research, 2018, 175: 1 − 12. [65] Sánchez-martín L, Arce A, Benito A, et al. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop[J]. Soil Biology and Biochemistry, 2008, 40(7): 1698 − 1706. doi: 10.1016/j.soilbio.2008.02.005 [66] Beheydt D, Boeckx P, Sleutel S, et al. Validation of DNDC for 22 long-term N2O field emission measurements[J]. Atmospheric Environment, 2007, 41(29): 6196 − 6211. doi: 10.1016/j.atmosenv.2007.04.003 [67] Lam S K, Suter H, Mosier A R, et al. Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword?[J]. Global Change Biology, 2017, 23(2): 485 − 489. doi: 10.1111/gcb.13338 [68] Qiao C, Liu L, Hu S, et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input[J]. Global Change Biology, 2015, 21(3): 1249 − 1257. doi: 10.1111/gcb.12802 [69] Machefert S E, Dise N B, Goulding K W T, et al. Nitrous oxide emission from a range of land uses across Europe[J]. Hydrology and Earth System Sciences, 2002, 6(3): 325 − 337. doi: 10.5194/hess-6-325-2002 [70] Bandyopadhyay K K, Lal R. Effect of land use management on greenhouse gas emissions from water stable aggregates[J]. Geoderma, 2014, 232-234: 363 − 372. doi: 10.1016/j.geoderma.2014.05.025 [71] Chen Z, Ding W, Luo Y, et al. Nitrous oxide emissions from cultivated black soil: A case study in Northeast China and global estimates using empirical model[J]. Global Biogeochemical Cycles, 2014, 28(11): 1311 − 1326. doi: 10.1002/2014GB004871 [72] Perlman J, Hijmans R J, Horwath W R. A metamodelling approach to estimate global N2O emissions from agricultural soils[J]. Global Ecology and Biogeography, 2014, 23(8): 912 − 924. doi: 10.1111/geb.12166 [73] Del Grosso S J, Parton W J, Mosier A R, et al. DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States[J]. Journal of Environment Quality, 2006, 35(4): 1451 − 1460. doi: 10.2134/jeq2005.0160 [74] Henault C, Bizouard F, Laville P, et al. Predicting in situ soil N2O emission using NOE algorithm and soil database[J]. Global Change Biology, 2005, 11(1): 115 − 127. doi: 10.1111/j.1365-2486.2004.00879.x [75] Reay D S, Davidson E A, Smith K A, et al. Global agriculture and nitrous oxide emissions[J]. Nature Climate Change, 2012, 2(6): 410 − 416. doi: 10.1038/nclimate1458 [76] Zhang W, Liu C Y, Zheng X H, et al. Comparison of the DNDC, Landscape DNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system[J]. Agricultural Systems, 2015, 140: 1 − 10. doi: 10.1016/j.agsy.2015.08.003 [77] Gaillard R K, Jones C D, Ingraham P, et al. Underestimation of N2O emissions in a comparison of the Day Cent, DNDC, and EPIC models[J]. Ecological Applications, 2018, 28(3): 694 − 708. doi: 10.1002/eap.1674 [78] Huang T, Gao B, Christie P, et al. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management[J]. Biogeosciences, 2013, 10(12): 7897 − 7911. doi: 10.5194/bg-10-7897-2013 [79] Rochette P, Worth D E, Lemke R L, et al. Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country – specific methodology[J]. Canadian Journal of Soil Science, 2008, 88: 641 − 654. doi: 10.4141/CJSS07025 [80] Rochette P, Worth D E, Huffman E C, et al. Estimation of N2O emissions from agricultural soils in Canada. II. 1990-2005 inventory[J]. Canadian Journal of Soil Science, 2008, 88: 655 − 669. doi: 10.4141/CJSS07026 [81] Rochette P, Eriksen-hamel N S. Chamber measurements of soil nitrous oxide flux: Are absolute values reliable?[J]. Soil Science Society of America Journal, 2008, 72(2): 331 − 342. doi: 10.2136/sssaj2007.0215 [82] Rochette P, Angers D A, Chantigny M H, et al. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures[J]. Canadian Journal of Soil Science, 2008, 88: 175 − 187. doi: 10.4141/CJSS06016 [83] Rochette P, Angers D A, Chantigny M H, et al. Carbon dioxide and nitrous oxide emissions following fall and spring applications of pig slurry to an agricultural soil[J]. Soil Science Society of America Journal, 2004, 68(4): 1410 − 1420. doi: 10.2136/sssaj2004.1410 [84] Pelster D E, Chantigny M H, Rochette P, et al. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types[J]. Journal of Environment Quality, 2012, 41(2): 427 − 435. doi: 10.2134/jeq2011.0261 [85] Rees R M, Augustin J, Alberti G, et al. Nitrous oxide emissions from European agriculture - an analysis of variability and drivers of emissions from field experiments[J]. Biogeosciences, 2013, 10(4): 2671 − 2682. doi: 10.5194/bg-10-2671-2013 [86] Beauchamp E G. Nitrous oxide emission from agricultural soils[J]. Canadian Journal of Soil Science, 1997, 77(2): 113 − 123. [87] Flessa H, Wild U, Klemisch M, et al. Nitrous oxide and methane fluxes from organic soils under agriculture[J]. European Journal of Soil Science, 1998, 49(2): 327 − 335. doi: 10.1046/j.1365-2389.1998.00156.x [88] Skiba U, Van Dijk S, Ball B C. The influence of tillage on NO and N2O fluxes under spring and winter barley[J]. Soil Use and Management, 2002, 18(4): 340 − 345. doi: 10.1079/SUM2002141 [89] De Klein C A M, Barton L, Sherlock R R, et al. Estimating a nitrous oxide emission factor for animal urine from some New Zealand pastoral soils[J]. Australian Journal of Soil Research, 2003, 41(3): 381 − 399. doi: 10.1071/SR02128 [90] Yao Z, Zheng X, Wang R, et al. Benefits of integrated nutrient management on N2O and NO mitigations in water-saving ground cover rice production systems[J]. Science of the Total Environment, 2019, 646: 1155 − 1163. doi: 10.1016/j.scitotenv.2018.07.393 [91] Liu Q, Liu B, Zhang Y, et al. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions?[J]. Soil Biology and Biochemistry, 2017, 104: 8 − 17. doi: 10.1016/j.soilbio.2016.10.006 [92] Fungo B, Chen Z, Butterbach-bahl K, et al. Nitrogen turnover and N2O/N2 ratio of three contrasting tropical soils amended with biochar[J]. Geoderma, 2019, 348: 12 − 20. doi: 10.1016/j.geoderma.2019.04.007 [93] Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366 − 1381. doi: 10.1111/gcb.12517 [94] Manning P. Piling on the pressures to ecosystems[J]. Science, 2019, 366(6467): 801. doi: 10.1126/science.aaz9000 -